
1

High Performance Computing
Jack Dongarra

1 Historical Overview

Looking back on the last four decades, high per-
formance computing (HPC) has been characterized
by rapid change in vendors, architectures, technolo-
gies, algorithms, software, and system usage. Despite
all these changes, performance has evolved steadily,
where performance is measured by the number of flops
per second, a flop being an elementary floating-point
operation (addition, subtraction, multiplication, or divi-
sion). Often cited in this context is Moore’s Law, which
states that the number of transistors on integrated
circuits doubles approximately every two years. Fig-
ure 1 plots the peak performance of various comput-
ers of the last six decades, all supercomputers of their
time, and demonstrates how well Moore’s law holds for
performance for nearly the entire lifespan of modern
computing.

The initial success in the 1970s of vector comput-
ers, which could carry out operations on whole vec-
tors at at time, was driven by raw performance. The
introduction of this type of computer system started
the modern supercomputing era. In the 1980s the
availability of standard development environments and
application software packages became more important.
Next to performance, these criteria determined the suc-
cess of multiprocessor vector systems, especially with
industrial customers.

Massively parallel processing (MPP) computers,
which share the work among a large number of pro-
cessors, became successful in the early 1990s due
to their better price/performance ratios, enabled by
increased performance of “off the shelf” microproces-
sors. In the lower and medium market segments, the
MPPs were replaced by microprocessor-based symmet-
ric multiprocessing (SMP) systems (systems in which
identical processors share the same memory) in the
middle of the 1990s. The success of microprocessor-
based SMPs, even for the very high-end systems, was
the basis for the emergence of cluster concepts in the
early 2000s. During the first half of the decade clus-
ters of PCs and workstations became the prevalent
architecture for many application areas. However, the
Japanese Earth Simulator vector system (2002) demon-
strated that many scientific applications could benefit
greatly from a different computer architecture and cre-

ated renewed interest within the scientific HPC com-
munity in new architectures and new programming
paradigms.

The IBM Roadrunner system at Los Alamos National
Laboratory, which employs a hybrid design built from
commodity parts, broke the petaflops (1015 floating-
point operations per second) threshold in June 2008.
The next major target is exascale computing (1018

floating-point operations per second), a thousandfold
increase over petascale, which is not expected to be
achieved before 2018.

2 Challenges

Science priorities lead to scientific models, and mod-
els are implemented in the form of algorithms. Algo-
rithm selection is based on various criteria, such as
accuracy, verification, convergence, performance, par-
allelism, and scalability. Models and associated algo-
rithms are not selected in isolation but must be eval-
uated in the context of the existing computer hard-
ware environment. Algorithms that perform well on
one type of computer hardware may become obsolete
on newer hardware, so selections must be made care-
fully and may change over time. Moving forward to
exascale will put heavier demands on algorithms in
at least two areas: the need for increasing amounts
of data locality in order to perform computations effi-
ciently, and the need to obtain much higher factors of
fine-grained parallelism as high-end systems support
increasing numbers of compute threads. As a conse-
quence, parallel algorithms must adapt to this environ-
ment, and new algorithms and implementations must
be developed to exploit the computational capabilities
of the new hardware. The transition from current sub-
petascale and petascale computing to exascale comput-
ing will be at least as disruptive as the transition from
vector to parallel computing in the 1990’s.

We now describe some of the particular challenges
ahead in the use of high performance computers.

2.1 New Algorithms for Multicore Architectures

Multicore processors, in which a single chip contains
two or more independent processing units called cores,
are now ubiquitous on the desktop through to HPC
systems. Scalable multicore systems bring a growing
cost of communication relative to computation. Within
a node (a single multicore processor) data transfer
between cores is relatively inexpensive, but across
nodes the cost of data transfer is becoming very large.

2

EDSAC 1
UNIVAC 1

IBM 7090

CDC 6600
IBM 360/195

CDC 7600 Cray 1
Cray X-MP

Cray 2 TMC CM-2

TMC CM-5 Cray T3D
ASCI Red

ASCI White Earth Simulator
Blue Gene/L

Roadrunner
Tianhe-1A

K
BG/Q

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1.00E+13

1.00E+14

1.00E+15

1.00E+16

1.00E+17

1
9

5
0

1
9

5
7

1
9

6
4

1
9

7
1

1
9

7
8

1
9

8
5

1
9

9
2

1
9

9
9

2
0

0
6

Year

Fl
o

p
/s

Moore's Law

Figure 1 Peak performance of the fastest computer systems for the last six decades.

♦ NJH Will leave Sam to tweak the figure—in particular to remove border. Original Excel figure is included in case that helps.
I note we have lost some of the x-axis labels that are there in the Excel figure! I won’t fiddle any more.

This trend is addressed by new approaches such as
communication-avoiding algorithms (see Section 2.4),
algorithms that support simultaneous computation
and communication, and algorithms that vectorize well
and have a large volume of functional parallelism.

2.2 Adaptive Response to Load Imbalance

Adaptive multiscale algorithms are an important part
of many applications because they apply computa-
tional power precisely where it is needed. However,
they introduce dynamically changing computation that
results in load imbalances from a static distribution
of tasks. As we move towards systems with billions
of processors, even naturally load-balanced algorithms
on homogeneous hardware will present many of the
same daunting problems with adaptive load balancing

that are observed in today’s adaptive codes. For exam-
ple, software-based recovery mechanisms for fault-
tolerance or energy-management will create substantial
load-imbalances as tasks are delayed by rollback to a
previous state or correction of detected errors. Schedul-
ing based on a directed acyclic graphs (DAGs) also
requires new approaches to optimize resource utiliza-
tion without compromising spatial locality. These chal-
lenges require development and deployment of sophis-
ticated software approaches to rebalance computation
dynamically in response to changing workloads and
conditions of the operating environment.

2.3 Multiple Precision Algorithms and Software

One instance of the increasingly adaptive nature of
libraries is the capability to recognize and exploit

3

the presence of mixed precision arithmetic. Motivation

comes from the fact that, on modern architectures, 32-

bit (single precision) floating-point operations can exe-

cute at least twice as fast as 64-bit (double precision)

operations. The performance of algorithms for solv-

ing linear systems or computing eigenvalues or singu-

lar values can be significantly enhanced by applying a

given method in single precision then using a few steps

of iterative refinement in double precision to elevate

the accuracy of the result from single to double preci-

sion. This technique can be applied not only to conven-

tional processors but also to other technologies such

as graphics processing units (GPUs), and so can more

effectively utilize heterogeneous hardware. The use of

mixed precision exploits not only the greater speed of

single precision arithmetic but also the reduce storage

and memory traffic of single versus double precision

arrays.

2.4 Communication Avoiding Algorithms

Algorithmic complexity is usually expressed in terms

of the number of operations performed rather than

the quantity of data movement within memory. How-

ever, in modern systems memory movement is increas-

ingly expensive compared with the cost of computa-

tion. It is therefore necessary to develop algorithms

that reduce communication to a minimum while not

unduly increasing the amount of computation. A gen-

eral approach is to derive bandwidth and latency lower

bounds for various dense and sparse linear algebra

algorithms on parallel and sequential machines, e.g., by

extending the well-known lower bounds for the usual

O(n3) matrix multiplication algorithm, and then to

seek new algorithms that (nearly) attain these lower

bounds. The study of communication-avoiding algo-

rithms is in its infancy, but it is already leading to new

algorithmic ideas and approaches.

2.5 Auto-tuning

Numerical libraries need to have the ability to adapt

to the possibly heterogeneous environment in which

they have to operate in order to achieve good perfor-

mance, energy efficiency, load balancing, and so on.

The objective is to provide a consistent library inter-

face that remains the same for users independent of

scale and processor heterogeneity, but which achieves

good performance and efficiency by binding to differ-

ent underlying code, depending on the configuration. In

addition, the auto-tuning has to be extended to frame-

works that go beyond library limitations, and are able

to optimize data layout (such as blocking strategies for

sparse matrix kernels), stencil auto-tuners (since sten-

cil kernels, which update array elements according to

a fixed pattern, are diverse and not amenable to library

calls) and even tuning of the optimization strategy for

multigrid solvers (optimizing the transition between

the multigrid coarsening cycle and course grid solver

to minimize run time). Adding heuristic search tech-

niques and combining them with traditional compiler

techniques will enhance the ability to address generic

problems.

2.6 Fault Tolerance and Robustness for Large-Scale

Systems

Modern PCs may run for weeks without rebooting and

most data servers are expected to run for years. How-

ever, because of their scale and complexity, today’s

supercomputers run for only a few days before a reboot

is needed. The major challenge in fault tolerance is that

faults in extreme scale systems, with their millions of

processors, will be continuous rather than exceptional

events. This requires a major shift from today’s soft-

ware infrastructure. On today’s supercomputers every

failure kills the application running on the affected

resources. These applications have to be restarted from

the beginning or from their last checkpoint. The check-

point/restart technique will not scale to highly par-

allel systems because a new fault will occur before

the application can be restarted, causing the applica-

tion to become stuck in a state of constant restarts.

New fault tolerant paradigms need to be developed

and integrated into both the system software and user

applications.

2.7 Building Energy Efficiency into Algorithm

Foundations

Energy consumption is becoming a major issue in HPC,

with energy costs for the some of the largest machines

already exceeding a million dollars per year. Power and

energy consumption must now be added to the tradi-

tional goals of algorithm design, namely correctness

and performance. The emerging metric of merit is per-

formance per watt. Energy reduction depends on soft-

ware as well as hardware., so it is essential to build

power and energy awareness, control and efficiency

into the foundations of numerical libraries.

4

2.8 Sensitivity Analysis

As the high fidelity solution of models becomes pos-
sible, the next challenge is to study the sensitivity of
the model to parameter variability and uncertainty and
to seek an optimal solution over a range of parame-
ter values. The most basic form, the forward method
for either local or global sensitivity analysis, simulta-
neously runs many instances of the model or its lin-
earization, leading to an embarrassingly parallel exe-
cution model. Such high-throughput computing tasks
are well suited to using spare cycles on pools of PCs,
for example running at night or weekends.

2.9 Numerical Pitfalls

Problems that warrant the use of the fastest comput-
ers are necessarily among the largest problems ever
to be solved, according to any appropriate measure of
problem dimension. Various mathematical or numeri-
cal difficulties can potentially arise as dimensions grow
ever larger, including slower convergence of an itera-
tive method that has performed well for smaller prob-
lems, computed results having lower accuracy due to
an increased number of rounding errors, and overflow
of intermediate results. A good example of what can go
wrong concerns the use of random number generators
to construct linear systems Ax = b to be solved by
Gaussian elimination with partial pivoting for bench-
marking purposes. The obvious approach is to fill the
columns of the matrix A, one by one, with the out-
put from a pseudorandom number generator. A few
years ago, after a computation of this form lasting
20 hours, the computed result was found to be incor-
rect. The cause was eventually identified as a singular
matrix A: the number of matrix elements exceeded the
period of the random number generator, with the result
that columns repeated and the matrix was singular. By
itself, singularity should not affect the computation,
since rounding errors usually ensure that the matrix
is numerically nonsingular. However, the presence of
exactly repeated columns eventually leads to zero piv-
ots, which cause algorithm failure. The moral of the
story is that a code that has worked perfectly up to a
certain problem size can fail in subtle ways for larger
problems.

One desirable numerical property of extreme-scale
computing is bit-wise reproducibility of results for any
fixed processor count. But current computing frame-
works and libraries do not guarantee reproducibility.
This is usually caused by a parallel reduction operation.

While the corresponding operation is mathematically

associative, associativity may not hold in floating point

arithmetic. For example, the natural way to evaluate the

sum a+ b+ c +d is from left to right, but alternatives

are (a + b) + (c + d) and (a + c) + (b + d), which are

trivial examples of a parallel reduction operation, and

these three expressions will usually produce different

results in floating point arithmetic. In general, one can-

not make assumptions about the order in which reduc-

tion operations are carried out in parallel, so the values

computed in floating point arithmetic may depend on

the number of threads of execution. This makes it much

harder to debug programs. At extreme scale it may be

possible to construct faster algorithms if the order of

evaluation is not pre-specified, for example through the

use of dynamic task scheduling. Thus, there may trade-

offs between speed and reproducibility. Furthermore,

it may be possible to more cheaply ensure a bound on

the variability between different runs than to guarantee

strict reproducibility, for example by using extra preci-

sion in selected parts of an algorithm. Many users may

prefer non-reproducible results produced very quickly.

along with a bound on the variability.

3 Outlook

The move to extreme-scale computing will require col-

laboration between hardware architects, systems soft-

ware experts, designers of programming models, and

implementers of the science applications that provide

the rationale for these systems. The various issues dis-

cussed in this article will need to be considered from a

whole system perspective, and the different tools will

need to interoperate. As new ideas and approaches

are identified and pursued, some will fail. As with

past experience, there may be breakthroughs in hard-

ware technologies that result in different micro and

macro architectures becoming feasible and desirable,

and these will require rethinking of algorithms and

system software.

Further Reading

[1] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.

Minimizing communication in numerical linear

algebra. SIAM J. Matrix Anal. Appl., 32(3):866–901,

2011.

[2] J. Dongarra, P. Beckman, et al. International exascale

software project roadmap. Int. J. High Performance

Computing Applications, 25(1):3–60, 2011.

5

[3] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A.
Van der Vorst. Numerical Linear Algebra for High-
Performance Computers. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1998.

[4] J. J. Dongarra and J. Langou. The problem with
the Linpack benchmark 1.0 matrix generator. Int. J.
High Performance Computing Applications, 23(1):5–
13, 2009.

[5] J. J. Dongarra and A. J. van der Steen. High-
performance computing systems: Status and out-
look. Acta Numerica, 21:379–474, 2012.

	High Performance Computing

