
Introduction to High Performance
Computing

A Blue Waters Online Course

Fall 2016

David Keyes, Instructor

Professor of Applied Mathematics and Computational Science
Director, Extreme Computing Research Center

King Abdullah University of Science and Technology

Unit 1, Part 1

How many computers
can dance on the head of a pin?

(an introductory lecture on the interaction of
application, algorithms, and architecture)

David E. Keyes
King Abdullah University of Science and Technology

with acknowledgments to

William D. Gropp
University of Illinois, Urbana-Champaign

A representative simulation

•  Suppose we wish to model the flow about a
business jet in real time, e.g.,
–  real-time control of flaps, slats, rudder
–  aero-elastic response
–  self-healing adaptations

•  Circumscribing box is about 30×20×10 m3

•  Want velocity, density, pressure in every
centimeter-sized cell ⇒ 6,000,000,000 points

•  Velocity has 3 components, so there are 5
unknowns per point ⇒ 30,000,000,000 or

 3 ×1010 unknowns

What do we compute?
•  Balance fluxes of mass, momentum, energy

–  conservation of mass (1 equation per cell)
–  Newton’s second law (3 equations per cell)
–  first law of thermodynamics (1 equation per cell)

•  Take conservation of mass as an example
–  “The time rate of change of mass in the cell

balances the flux of mass convected into or out of
the cell.”

–  As a partial differential equation, we write for mass
density ρ and velocity v:

ρ = −∇•(ρv)

Discrete conservation laws
•  For a computer, we need to discretize

–  convert continuously posed partial differential equation into
algebraic form

–  then convert the algebra into an arithmetic algorithm
–  we code the algorithm in floating point computer arithmetic

•  Flux balances can be drawn up for mass,
momentum, and energy in each cell

•  Simplest first attempt at data structure: center the
cells on an integer lattice
–  index i runs in the x direction , j in y , and k in z
–  time level l runs over different copies of the spatial lattice
–  store a value in each cell and alternatively update copies

Conservation of mass
•  In three dimensions and Cartesian coordinates

•  Differential equation expands in 3D to

),,(
zyx ∂

∂

∂

∂

∂

∂
=∇

∂ρ
∂t

= −[∂(ρu)
∂x

+
∂(ρv)
∂y

+
∂(ρw)
∂z

]

),,(v wvu=

x, u

y, v

z, w

Discretize the derivatives
•  Let ρ(xi,yj,zk,tl) be approximated as ρl

ijk , with
shorthand for lower dimensions

•  We can estimate the gradient of the mass flux
over the +x face of the cell as follows

•  Similar expressions may be developed for the y
and z derivatives, covering all six faces

∂(ρu)
∂x i

≈
1
Δx
[(ρu)i+1/2 − (ρu)i−1/2]

i i+1 i+2 i-2 i-1

xΔ

Discretization, continued
•  Note that each facial flux appears in the balance of

the two cells on either side of the face
–  observations like this can allow re-use of intermediates
–  for this introduction, we ignore such details of spatial and

temporal locality, which are important in practice

•  Estimate the time derivative similarly, using a
promotion of the superscript (“forward difference”)

∂ρ
∂t ijk

l

≈
1
Δt
[ρijk

l+1 − ρijk
l] l is “current”

l+1 is “next”

Discretization, continued

•  These derivative approximations are not the most

accurate possible, nor are they universally chosen
–  sometimes, unknowns are staggered at different

locations per cell
–  accuracy improves here as first power of and
–  often, faster rates of convergence are sought
–  for a fixed order, accuracy increases as mesh is refined
–  for a fixed mesh, accuracy increases as the order is

raised
–  at least second-order is frequently achieved in practice
–  in recent research targeting many-core machines, we

have used up to 32nd order (!)

xΔ tΔ

Discrete mass conservation
rate of
mass

accumulation

!

"
#

$
#
#

%

&
#

'
#
#

=

rate of
mass
in

!

"
#

$
#
#

%

&
#

'
#
#

−

rate of
mass
out

!

"
#

$
#
#

%

&
#

'
#
#

ΔxΔyΔz
Δt

(ρ
ijk

l+1
− ρ

ijk

l) = −ΔyΔz ρu()
i+1/2, jk

l
− ρu()

i−1/2, jk

l#
$%

&
'(

−ΔxΔz ρv()
i, j+1/2,k

l
− ρv()

i, j−1/2,k

l#
$%

&
'(

−ΔxΔy ρw()
ij ,k+1/2

l
− ρw()

ij ,k−1/2

l#
$%

&
'(

Estimating the half-cell quantities

ρu()
i+1/2, jk

l

≈
1
2

ρu()
ijk

l
+ ρu()

i+1, jk

l"
#$

%
&'
≈
1
2
[ρijk

l uijk
l + ρi+1, jk

l ui+1, jk
l]

•  Relating the staggered quantities on the right-hand
side to the original grid functions, we get

 and five similar expressions
•  This completes the discretization of the law of

conservation of mass

Additional conservation laws
•  Similar flux balances can be drawn up for

momentum and energy in each cell
•  These fluxes are slightly more complex and are

modeled in terms of second derivatives (or
higher)

•  See a Mathematical Modeling course in AeroE,
MechE, ChemE, ElecE, etc., to understand how
the terms to be discretized for computation arise
physically

•  See a Numerical Analysis of PDEs course to see
how higher-order discretizations can be
developed

Aside
•  Often in this course, we need to appeal to

results from disciplines that we cannot presume
all students will have seen
–  High performance computing has been motivated,

historically, by problems in science and engineering
and our examples are largely drawn from these

•  To succeed in the course, concentrate on what
is in common and developed internally to our
lecture series

•  To succeed in life, aggressively expand your
knowledge into adjacent areas

Stencil for mass conservation
in one space dimension

l+1

l

How much computation?
•  For our 7-point spatial discretization in 3D, and

first-order temporal discretization, each equation
at each point (a “stencil operation”) at each
computational time step requires roughly 8
arithmetic operations
–  more efficient stencil evaluations on emerging

manycore architecture hardware, memory-bandwidth
limited, is a hot topic

•  How many computational time steps?
–  how much real time must be simulated?
–  how big can the time step be? tΔ

Computational stability
•  It turns out (beyond the scope of this introductory

lecture) that the computational simulation will “blow
up” if the algorithm tries to outrun “causality” in
nature with too large a time step
–  waves propagate with finite speed
–  wave speed defines for each point (x,y,z,t) a spatial

“domain of dependence” on data from earlier times
–  if this domain of dependence is not respected, small errors

can be amplified (and floating point computations always
create small rounding errors)

–  this is known as numerical instability

Computational stability, cont.
•  The computational time step must be small enough

that the fastest wave admitted by the governing
equations does not cross an entire cell in a single
time step
–  the computational domain of dependence must include the

entire physical domain of dependence
•  For our compressible flow, information propagates at

the speed of sound
•  For speed c , Courant, Friedrichs, and Levy in 1928

told us:

•  This is the “CFL stability criterion” for a wave
equation

Δt < Δx / c

The original CFL paper (1928)
“Problems involving the classical linear
partial differential equations of mathematical
physics can be reduced to algebraic ones of
a very much simpler structure by replacing
the differentials by difference quotients on
some (say rectilinear) mesh. This paper will
undertake an elementary discussion of
these algebraic problems, in particular of the
behavior of the solution as the mesh width
tends to zero.”

time

space

A finite sloped line in space-
time represents a signal
velocity. Points later in time
depend upon information
from earlier time; spatial
spread grows with signal
velocity. Numerical domain
of dependence must include
the physical domain of
dependence, by taking
timesteps sufficiently small.

not
OK

 OK

Aside
•  We will look experimentally at the consequences

of violating the Courant-Friedrichs-Levy stability
limit later in the course
–  the theory is not difficult, but better developed in a

numerical analysis course
•  Throughout this course, including three times

today, we will direct the curious student to
original sources for foundational ideas in high
performance computing
–  the 1928 CFL paper laid foundations for today’s HPC
–  along with L. F. Richardson’s 1922 book, which was

written in ignorance of the stability limit (more later)

Let’s plug in and see…

•  Sound travels approximately 700 mi/hr in the
standard atmosphere, or about 3 × 104 cm/s

•  Therefore, for a 1 cm distance between cell
centers

€

Δt ≤ Δx /c ≈ 3×10−5 sec

How many operations per second?

•  Suppose we want to simulate 1 sec of real
time

•  Total operations required are

 or operations
•  To perform the simulation in real time, we

need 8 × 1015 operations per second, or 8
Pflop/s, or, equivalently, one operation every
1.25 × 10-16 sec

1 sec
3×10−5 sec/step

×
8 operations/step

unknown
×3×1010unknowns

15108×

Prefix review

•  “flop/s” means “floating point operations per
sec”

1,000 Kiloflop/s Kf
1,000,000 Megaflop/s Mf

1,000,000,000 Gigaflop/s Gf
1,000,000,000,000 Teraflop/s Tf

1,000,000,000,000,000 Petaflop/s Pf

Your laptop

University lab

Best in class
As of July 2015, approximately __ computers in the world were
known to exceed 1 PF/s on the dense linear algebraic
benchmark, ranging up to ____ PF/s.

95

93.01

How big can the computer be?

•  Assume signal must travel from one end to the
other in the time it takes to do one operation,
1.25 × 10-16 sec

•  Light travels about a foot in 10-9 sec, or 1 cm in 3
× 10-11 sec

•  Maximum size for the computer is therefore

 or about 4 × 10-6 cm

sec1025.1
sec103

cm1 16
11

−
−

××
×

How many fit on the head of a pin?
•  Pin head has area of about 10-2

cm2

•  For square computers with area
(4 x 10-6 cm)2, or 1.6 × 10-11 cm2,
there would be

 of our completely causally
connected computers on the
head of a pin

8
11

2

106
106.1

10
×=

× −

−

What is wrong with our
assumptions?

•  Signal must cross the computer every
operation

•  Perform one operation at a time
•  Use simple monolithic algorithm on

uniform grid

How to address these issues
•  Signal must cross the computer every

operation
– Pipelining allows the computer to be “strung

out” within a processor
•  Perform one operation at a time

– Parallelism allows many simultaneous
operations on different processors

•  Use simple monolithic algorithm on a
uniform grid
– Adaptivity reduces the number of operations

required for a given accuracy

Pipelining
•  Often, an operation (e.g., a

multiplication of two floating
point numbers) is done in
several stages
 input→stage1→stage2→output

•  Each stage is hosted by a
different piece of hardware
and can be operating on a
different multiplication

•  The partially assembled
“product” is passed from
stage to stage

•  Like assembly lines for
airplanes, cars, and many
other products

Consider laundry pipelining
Alex, Briley, Chris, and Drew must each wash (30 min), dry (40 min), and
fold (20 min) laundry. If each waits until the previous is finished, the four
loads require 6 hours.

c/o D. Patterson

Laundry pipelining, cont.
If Briley starts the second wash as soon as Alex finishes, and then Chris
starts the third wash as soon as Briley finishes, etc., the four loads require
only 3.5 hours.

Note that in the middle of
the task set, all three
stations are in use
simultaneously.

For long streams, ideal
speed-up approaches
three – the number of
available stations.

Imbalance between the
stages, and pipe filling
and draining effects
make actual speedup
less.

c/o D. Patterson

Arithmetic pipelining
•  An arithmetic operation may have 5 stages

–  Instruction fetch (IF)
–  Read operands from registers (RD)
–  Execute operation (OP)
–  Access memory address (AM)
–  Write back to memory (WB)

IF OP AM WB RD

IF OP AM WB RD

IF OP AM WB RD

Instructions

Time

…
Actually, each of these
stages may be
superpipelined further!

Benefits of pipelining

•  Allows the computer to be physically larger
•  Signals need travel only from one stage to

the next per clock cycle, not over entire
computer

Problems with pipelining
•  Must find many operations to do independently,

since results of earlier scheduled operations are
not immediately available for the next; waiting
may stall pipe

•  Conditionals may require partial results to be
discarded

•  If pipe is not kept full, the extra hardware is
wasted, and machine is slow

IF OP AM WB RD Create “x”

Consume “x” IF OP AM WB RD

Time

Problems with pipelining
•  Must find many operations to do independently,

since results of earlier scheduled operations are
not immediately available for the next; waiting
may stall pipe

•  Conditionals may require partial results to be
discarded

•  If pipe is not kept full, the extra hardware is
wasted, and machine is slow

IF OP AM WB RD

IF OP AM WB RD stall

Create “x”

Consume “x”

Time

Parallelism
•  Often, a large group of operations can be done

concurrently, without memory conflicts
•  In our simple explicit airplane example, each

cell update involves only cells at the previous
level
–  All cells at the l+1st level can be updated independently

No purple cell
quantities are
involved in each
other’s stencil
updates.

Parallelism in building a wall

Each worker has an interior “chunk” of independent work, but
workers require periodic coordination with their neighbors at their
boundaries. One slow worker will eventually stall the rest. Potential
speedup is proportional to the number of workers, less coordination
overhead.

c/o G. Fox

Vertical task decomposition

overlap zones

c/o G. Fox

Multiple decompositions possible

c/o G. Fox

A horizontal decomposition, rather than vertical, looks like pipelining.
Each worker must wait for the previous to begin; then all are busy
until near the end. Potential speedup is proportional to number of
workers in the limit of an infinitely long wall.

Nonuniform tasks

In the two previous examples, all workers “ran the same
program” on “data” in different locations: single-program,
multiple-data (SPMD). In the example above, there are two
types of programs: one for odd-numbered workers, another
for even-numbered.

(Actually, these are two different parameterizations of
basically the same program.)

Observe that the work is load-balanced; each worker has the
same number of bricks to lay.

c/o G. Fox

Inhomogeneous tasks

For this highly irregular wall, the differently placed holes may
require very different amounts of time to position. It may be a
priori difficult to estimate a load-balanced decomposition of
concurrent work.

Building this wall may require dynamic decomposition to
keep each worker busy.

There is a tension between concurrency and irregularity.
Orders are much harder to give for workers on this wall.

c/o G. Fox

Benefits of parallelism

•  Allows the computer to be physically larger
•  If we had one million computers, then

each computer would only have to do
8×109 operations per second
– say 4 operations per clock on a 2 GHz

processor
•  This would allow the computers to be

about 3 cm apart

Parallel processor configurations
In the airplane example, each
processor in the 3D array (left)
can be made responsible for a
3D chunk of space.

The global cross-bar switch is
overkill in this case. A mesh
network (below) is sufficient.

Estimating scalability of
“stencil computations”

•  Given complexity estimates of the leading terms of:
–  the concurrent computation (per iteration phase)
–  the concurrent communication
–  the synchronization frequency

•  And a model of the architecture including:
–  internode communication (network topology and protocol reflecting

horizontal memory structure)
–  on-node computation (effective performance parameters including

vertical memory structure)

•  One can estimate optimal concurrency and optimal
execution time
–  on per-iteration basis
–  simply differentiate time estimate in terms of (N,P) with respect to P,

equate to zero, and solve for P as a function of N

 Estimating 3D stencil costs (per iteration)

•  grid points in each
direction n, total work
N=O(n3)

•  processors in each
direction p, total procs
P=O(p3)

•  memory per node
requirements O(N/P)

•  concurrent execution time per
iteration: A n3/p3

•  grid points on side of each
processor subdomain: n/p

•  concurrent neighbor commun.
time per iteration: B n2/p2

•  cost of global reductions in
each iteration: C log P or
C P(1/d), where d is dimension
•  C includes synchronization

frequency

•  Same units for measuring A,
B, C
•  e.g., cost of scalar floating point

multiply-add

3D stencil computation illustration
Rich local network, tree-based global reductions

•  Total wall-clock time per iteration

•  For optimal p, , or

 or (with),

•  p can grow linearly with n
•  In the limit as ,

T (n, p) = A n
3

p3
+B n

2

p2
+3C log p

0=
∂

∂

p
T −3A n

3

p4
− 2B n

2

p3
+
3C
p
= 0,

θ ≡
32B3

729A2C

popt =
A
2C
!

"
#

$

%
&

1
3
1+ (1− θ)(
)

*
+
1
3 + 1− (1− θ)(
)

*
+
1
3!

"
#

$

%
&⋅n

0→C
B popt =

A
C
!

"
#

$

%
&

1
3
⋅n

3D stencil computation illustration
Rich local network, tree-based global reductions

•  Optimal running time:

 where

•  Limit of infinite neighbor bandwidth, zero

neighbor latency (B, θ approach 0):

(),log))(,(23 nCBAnpnT opt ρ
ρρ

++=

ρ =
A
2C
!

"
#

$

%
&

1
3
1+ (1− θ)(
)

*
+
1
3 + 1− (1− θ)(
)

*
+
1
3!

"
#

$

%
&

⎥⎦

⎤
⎢⎣

⎡ ++= .log
3
1log))(,(const

C
AnCnpnT opt

•  With tree-based (logarithmic) global
reductions and scalable nearest neighbor
hardware:
–  optimal number of processors scales linearly with

problem size

•  With 3D torus-based global reductions and
scalable nearest neighbor hardware:
–  optimal number of processors scales as three-

fourths power of problem size (almost
“scalable”)

•  With common network bus (heavy
contention):
–  optimal number of processors scales as one-

fourth power of problem size (not “scalable”)

Scalability results for 3D stencil computations

Moore’s Law
In 1965, Gordon Moore of
Intel observed an
exponential growth in the
number of transistors per
integrated circuit and
optimistically predicted
that this trend would
continue.

It did.

For about 40 years…

“Moore’s Law”
informally refers to a
doubling of transistors
per chip every 18-24
months, which translates
into performance, though
not quite at the same
rate.

c/o Intel

CPU Transistor Counts, 1970-2010 and Moore’s Law

The original Moore paper (1965)
“Integrated circuits will lead to such wonders as
home computers […], automatic controls for
automobiles, and personal portable
communications equipment. The electronic
wristwatch needs only a display to be feasible
today... Computers will be more powerful, and
will be organized in completely different ways.
For example, memories built of integrated
electronics may be distributed throughout the
machine instead of being concentrated in a
central unit.”

Avera
Average number of processor cores in a

supercomputer

…

1,022,916

Aside
•  Most of the world’s supercomputers are ranked

against each other about every six months, at
ISC’xy (June) and SC’xy (November),
respectively

•  500 top computers are ranked by the High
Performance Linpack (HPL) benchmark

•  HPL measures the rate at which a computer can
perform dense Gaussian elimination with partial
pivoting

•  We take a brief look at the Top 10 computers
ranked by the High Performance Linpack (HPL)
benchmark

#1-ranked TaihuLight by Sunway / NRCPC

10,649,600 processor cores on
40,960 SW26010 chips (125.4 PetaFlop/s)

Global #1 ranked system (China first entered Top 50 in 2008)

#2-ranked Tianhe-2 by Inspur / NUDT / Intel

3,120,000 processor cores on
32K Ivy Bridge + 48K Xeon Phi chips (54.9 PetaFlop/s)

 US DOE’s Top 10 petascale systems

 #3 Cray XK7
“Titan” (ORNL)

 #6 IBM BlueGene/Q
“Mira” (ANL)

#4 IBM BlueGene/Q
“Sequoia” (LLNL)

#7 Cray XC40
“Trinity” (LANL)

 More Top 10 petascale systems

 #5 Fujitsu
“Kei” (Riken)

 #9 Cray XC40
“Hazel Hen” (HLRS)

#8 Cray XC30
“Piz Daint” (CSCS)

#10 on HPL: High Performance Linpack (76% of theoretical peak)
#12 on HPCG: High Performance Conjugate Gradient (1.6% of theoretical peak)
#4 on HPGMG: High Performance Geometric Multigrid (~0.65% of theoretical peak)

KAUST’s Top 10 system

 #10 Cray XC40 “Shaheen”

We shall study the basis for all three benchmarks: dense
direct solvers, sparse Krylov solvers, and multilevel solvers

Aside
•  The primary supercomputer used for exercises

in this course, Blue Waters, hosted by UIUC for
the National Center for Supercomputer
Applications (NCSA) would be approximately #5
on the TOP500 list, if it participated

•  Since HPL is not representative of the majority of
large scale computational science and
engineering applications, and since it requires
significant resources to run, the NCSA has
declined to submit

1979:	 Computa-onal	 Fluid	 Dynamics	 for	 B767	

High-Speed Wing
Design

Cab Design

Engine/Airframe
Integration

Inlet Design

Wing-Body
Fairing Design

Nacelle Design

Much CFD penetration.
Opportunities exist for higher

accuracy and expanded complexity

Some CFD penetration.
Opportunities exist for large

increases in design process speed
and application

CFD penetration opportunity

c/o Douglas Ball, Boeing

2005:	 Computa-onal	 Fluid	 Dynamics	 for	 B787	

High-Speed Wing
Design

Cab Design

Engine/
Airframe

Integration

Inlet Design
Inlet Certification

Exhaust
System Design

Cabin
Noise

Community Noise

Wing-Body
Fairing Design

Vertical Tail
and Aft Body

Design
Design For
Stability &

Control

High-Lift
Wing Design

APU Inlet
And Ducting

ECS Inlet
Design

APU and Propulsion
Fire Suppression

Nacelle Design

Thrust Reverser
Design

Design for FOD
Prevention

Aeroelastics

Much CFD penetration.
Opportunities exist for higher

accuracy and expanded complexity

Some CFD penetration.
Opportunities exist for large

increases in design process speed
and application

Icing

Air Data
System

Location

Connexion
Antenna

Vortex Generator
Placement

Planform
Design

Buffet
Boundary

Wake Vortex Alleviation
Reynolds Number

Corrections for Loads and
S&C

Flutter

Control Failure
Analysis

Wind Tunnel
Corrections

Design For
Loads

Wing Tip Design

Wing
Controls

Avionics Cooling

Interior
Air

Quality

Engine Bay Thermal Analysis

CFD penetration opportunity

c/o Douglas Ball, Boeing

Simulation driven by price and
capability

	
	

Year	

Cost	 per	
delivered	
Gigaflop/s	

1989	 $2,500,000	 	 	 	 	 	 	 	
1999	 $6,900	
2009	 $8	

	
	

Year	

Gigaflop/s	
delivered	 to	
applica-ons	

1988	 1	
1998	 1,020	
2008	 1,350,000	

By the Gordon Bell Prize, simulation cost per performance has
improved by nearly a million times in two decades. Performance
on real applications (e.g., mechanics, materials, petroleum
reservoirs, etc.) has improved more than a million times.

Gordon Bell
Prize: Peak

Performance

Gordon Bell
Prize: Price

Performance

Gordon Bell Prize outpaces Moore’s Law

Three orders
of magnitude
every 10 years

Gordon Moore

Gordon Bell

<<Demi Moore>>

CONCUR-
RENCY!!!

Problems with parallelism
•  Must find massive concurrency in the task
•  Still need many computers, each of which

must be fast
•  Communication between computers

becomes a dominant factor
•  Amdahl’s Law limits speedup available

based on remaining non-concurrent work

The original Amdahl paper (1967)
“The physical problems which are of practical
interest tend to have rather significant
complications. Examples are as follows:
boundaries are likely to be irregular; interiors
are likely to be inhomogeneous; computations
required may be dependent upon the states of
the variables at each point; propagation rates
of different physical effects may be quite
different; the rate of convergence, or
convergence at all, may be strongly dependent
upon sweeping through the array along
different axes on succeeding passes; etc.”

Amdahl’s Law (1967)

1
1)1(Tf
P
TfTP −+=

PffT
TSpeedup
P /)1(

11

+−
=≡

In 1967 Gene Amdahl of Cray Computer formulated his famous
pessimistic formula about the speedup available from concurrency. If
f is the fraction of the code that is parallelizable and P is the number
of processors available, then the time TP to run on P nodes as a
function of the time T1 to run on 1 is:

1

10

100

1000

10000

4 16 64 246 1024

f = 0.8
f= 0.9
f = 0.95
f = 0.99
f = 0.999
f = 1.0

Sp
ee

du
p

Number of processors)1(
1lim
f

Speedup
P −

=
∞→

What is the speed-up
available?

Most basic issue: algorithm!
•  Our prime problem and opportunity,

however, is not architectural!
•  It is that we are computing more data than

we need!
•  We should compute only where needed

and only what needed
•  Algorithms that do this effectively, while

controlling accuracy, are called adaptive

Adaptive algorithms
•  For an airplane, we need 1 cm (or better)

resolution only in boundary layers and
shocks
– Elsewhere, much coarser (e.g., 10 cm) mesh

resolution is sufficient
•  A factor of 10 less resolution in each

dimension reduces computational
requirements by 103

Adaptive Cartesian mesh

far field
near field

inviscid shock

Adaptive triangular mesh

viscous boundary layer

Unstructured grid for complex geometry

slat flaps

How does the discretization work?
Just like before, except for geometry

Construct “grid” of triangles

Construct “control volumes”
surrounding each vertex

Compute effluxes

Compute influxes

Compute internal sources

Finally, sum all fluxes and sources (with proper sign) and
adjust value at vertex; then loop over all such vertices.

Scientific visualization adds insight

Computer becomes an experimental laboratory, like a
windtunnel, and can be outfitted with diagnostics and
imaging intuitive to windtunnel experimentalists.

Benefits of adaptivity, cont.
•  If adaptivity reduces storage and operation

requirements by 1000, this leaves 8 × 1012
operations per second, or 8 Tflop/s

•  This is readily available today
–  for a modest price compared to cost of plane
–  e.g., in a handful of GPUs (!)
–  drawing a few KiloWatts

•  However, detailed aerodynamics codes are not
routinely employed in automated real-time loops
–  providing accurate initial and boundary conditions is a

challenge
–  reduced-order models based on ready observables

are more practical

Problems with adaptivity
•  Difficult to guarantee accuracy

–  much more mathematics to be done for realistic
computer models

•  Difficult to program
–  complex dynamic data structures

•  Can’t always help
–  sometimes resolution really is needed everywhere,

e.g., in wave propagation problems
•  May not work well with pipelining and parallel

techniques
–  tension between conflicting needs of local focusing of

computation and global regularity

Conclusions
•  Parallel networks of commodity pipelined

microprocessors offer cheap, fast, powerful
supercomputing

•  Algorithm development offers better, more
efficient ways to use all computers

•  Riding the waves of architectural advancements
and creating improved simulation techniques
opens up new vistas for computational science
across the spectrum

Summary
•  Application – computational aerodynamics
•  Numerical analysis – discretization of

conservation laws
•  Courant stability limit (1928) – speed of sound
•  Hardware limit– speed of light
•  Computer architecture – pipelining & parallelism
•  Moore’s Law (1965)
•  Amdahl’s Law (1967)
•  Power of adaptive, optimal algorithms
•  Bell Prizes (1988 onwards)
•  Cost-effective future of simulation

Slide credits
•  Kyle Anderson (NASA)
•  David Patterson (UC Berkeley)
•  Geoffrey Fox (U Indiana)
•  Bill Gropp (Argonne Nat Lab)
•  Douglas Ball, David Young, and

Venkatasubramanian Venkatakrishnan (Boeing)

