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A representative simulation

Suppose we wish to model the flow about a

business jet in real time, e.qg.,

— real-time control of flaps, slats, rudder
— aero-elastic response
— self-healing adaptations

Circumscribing box is about 30%x20%x10 m?3

Want velocity, density, pressure in every
centimeter-sized cell = 6,000,000,000 points

Velocity has 3 components, so there are 5
unknowns per point = 30,000,000,000 or

3 x101% unknowns




What do we compute?

* Balance fluxes of mass, momentum, energy
— conservation of mass (1 equation per cell)
— Newton’s second law (3 equations per cell)
— first law of thermodynamics (1 equation per cell)

« Take conservation of mass as an example

— “The time rate of change of mass in the cell
balances the flux of mass convected into or out of
the cell.”

— As a partial differential equation, we write for mass
density p and velocity v:

p=-Ve(pv)



Discrete conservation laws

For a computer, we need to discretize

— convert continuously posed partial differential equation into
algebraic form

— then convert the algebra into an arithmetic algorithm
— we code the algorithm in floating point computer arithmetic

Flux balances can be drawn up for mass,
momentum, and energy in each cell

Simplest first attempt at data structure: center the

cells on an integer lattice

— index i runs in the x direction, jiny, andkinz

— time level [ runs over different copies of the spatial lattice
— store a value in each cell and alternatively update copies



Conservation of mass

* In three dimensions and Cartesian coordinates
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Discretize the derivatives
* Let p(x,y;z,1) be approximated as o', with
shorthand for lower dimensions

* We can estimate the gradient of the mass flux
over the +x face of the cell as follows
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» Similar expressions may be developed for the y
and z derivatives, covering all six faces



Discretization, continued

* Note that each facial flux appears in the balance of

the two cells on either side of the face
— observations like this can allow re-use of intermediates

— for this introduction, we ignore such details of spatial and
temporal locality, which are important in practice

« Estimate the time derivative similarly, using a
promotion of the superscript (“forward difference”)

[
a_p ~ i[ ,0,-121 _ IOil'k] [is “current”
of | At ! ! [+1is “next”




Discretization, continued

* These derivative approximations are not the most

accurate possible, nor are they universally chosen

— sometimes, unknowns are staggered at different
locations per cell

— accuracy improves here as first power of Ax and At

— often, faster rates of convergence are sought

— for a fixed order, accuracy increases as mesh is refined

— for a fixed mesh, accuracy increases as the order is
raised

— at least second-order is frequently achieved in practice

— In recent research targeting many-core machines, we
have used up to 32" order (!)



Discrete mass conservation
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Estimating the half-cell quantities

* Relating the staggered quantities on the right-hand
side to the original grid functions, we get

l zll(pu) 1
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2
and five similar expressions
* This completes the discretization of the law of

conservation of mass
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Additional conservation laws

Similar flux balances can be drawn up for
momentum and energy in each cell

These fluxes are slightly more complex and are
modeled in terms of second derivatives (or
higher)

See a Mathematical Modeling course in AeroE,
MechE, ChemE, ElecE, etc., to understand how
the terms to be discretized for computation arise
physically

See a Numerical Analysis of PDEs course to see

how higher-order discretizations can be
developed



Aside

« Often in this course, we need to appeal to
results from disciplines that we cannot presume
all students will have seen

— High performance computing has been motivated,
historically, by problems in science and engineering

and our examples are largely drawn from these

 To succeed in the course, concentrate on what

IS In common and developed internally to our
lecture series

« To succeed in life, aggressively expand your
knowledge into adjacent areas




Stencil for mass conservation
IN one space dimension
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How much computation?

* For our 7-point spatial discretization in 3D, and
first-order temporal discretization, each equation
at each point (a “stencil operation”) at each
computational time step requires roughly 8
arithmetic operations

— more efficient stencil evaluations on emerging
manycore architecture hardware, memory-bandwidth

limited, is a hot topic
 How many computational time steps?
— how much real time must be simulated?
— how big can the time step At be?



Computational stability

* It turns out (beyond the scope of this introductory
lecture) that the computational simulation will “blow
up” if the algorithm tries to outrun “causality” in

nature with too large a time step

— waves propagate with finite speed

— wave speed defines for each point (x,y,z¢) a spatial
“domain of dependence” on data from earlier times

— if this domain of dependence is not respected, small errors
can be amplified (and floating point computations always
create small rounding errors)

— this is known as numerical instability



Computational stability, cont.

The computational time step must be small enough

that the fastest wave admitted by the governing

equations does not cross an entire cell in a single

time step

— the computational domain of dependence must include the
entire physical domain of dependence

For our compressible flow, information propagates at

the speed of sound

For speed ¢, Courant, Friedrichs, and Levy in 1928

told us:
At <Ax/c

This is the “CFL stability criterion” for a wave
equation



The original CFL paper (1928

‘Problems involving the classical linear
partial differential equations of mathematical
physics can be reduced to algebraic ones of
a very much simpler structure by replacing
the differentials by difference quotients on
some (say rectilinear) mesh. This paper will
undertake an elementary discussion of
these algebraic problems, in particular of the
behavior of the solution as the mesh width
tends to zero.’

Figure 9

A finite sloped line in space-
time represents a signal A
velocity. Points later in time .
depend upon information t|me
from earlier time; spatial
spread grows with signal —\
velocity. Numerical domain

of dependence must include
the physical domain of
dependence, by taking -
timesteps sufficiently small.

R. Courant*
K. Friedrichs*
H. lewy!

On the Partial Difference Equations

of Mathematical Physics

Editor’s note: This paper, which originally appeared in Mathematische Annalen 100, 32-74 (1928), is republished by permission of the

authors. We are aiso grateful (0 the Atomic Energy Commission

for permission to republish this translation, which

AEC Report NYO-7689, and to Phyllis Fox, the translator, who did the work at the AEC Computing Facility at New York University

under AEC Contract No. AT(30-1)-1480. Professor Eugene Isaacson had ma

Introduction

Problems involving the classical linear partial differential
pquations of mathematical physics can be reduced to
lgcbnnc ones of a very much simpler structure by replac-
lifferentials by difference quotients on some (say
hiesh. This paper will undertake an elementary
these algebraic problems, in particular of
of the solution as the mesh width tends to

Mesent purposes we limit ourselves mainly to
lmplc tm typical cases, and treat them in such a way that
he applicability of the method to more general difference
bquations and to those with arbitrarily many independent

iables is made clear.

e TS PrOOTTETO?
partial differential equations we e will treat boundary value
and eigenvalue problems for elliptic difference equations,
and initial value problems for the hyperbolic or parabolic
cases. We will show by typical examples that the passage
to the limit is indeed possible, i.c., that the solution of
the difference equation converges to the solution of the
corresponding differential equation; in fact we will find
that for elliptic equations in general a difference quotient
of arbitrarily high order tends to the corresponding deri-
ative. Nowhere do we assume the existence of the solution
to the differential equation problem—on the contrary, we
obtain a simple existence proof by using the limiting
process.’ For the case of elliptic equations convergence is

+ Our method of proof may be extended without diffculty (o cover bound:
ary value and eigenvalue problems for arbitrary linear ellipeic differential
d bniiad

equations.
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¢ suggestions on this translation.

obtained independently of the choice of mesh, but we
will find that for the case of the initial value problem for
hyperbolic equations, convergence is obtained only if
the ratio of the mesh widths in different directions satis-
fies certain inequalities which in turn depend on the posi-
tion of the characteristics relative to the mesh.

We take as a typical case the boundary value problem
of potential theory. Its solution and its relation to the
solution of the corresponding difference equation has
been extensively treated during the past few years.” How-
ever in contrast to the present paper, the previous work has
involved the use of quite special characteristics of the
potential equation so that the applicability of the method
used there 10 other problems has not been immediately
evident.

In addition to the main part of the paper, we append
an elementary algebraic discussion of the connection of
the boundary value problem of elliptic equations with the
random walk problem arising in statistics.

* Now at Courant Insitute of Mathematical Sciences, New York Uni-
versiy.

1 Now at Usiversity of California, Berkeley

# 1. Je Roux, “Sur le problem de Dirichler", Journ. de mathéo. pur. et appl.
(610,189 (1919). R. G. D. Richardson, “A new methor in boundary probems
", ‘Math. Soc. 18,

ek, “On an application of the direct method [n variatlon a
s Maser, o Mowon, 1936, O, Boulonnd
i 4, o (1920,
o frther applatons o
ks Medhoden n det Varomrechante-
Nith, e 0, . T, and e eevences e thereine



Aside

 We will look experimentally at the consequences
of violating the Courant-Friedrichs-Levy stability
limit later in the course

— the theory is not difficult, but better developed in a
numerical analysis course

* Throughout this course, including three times
today, we will direct the curious student to
original sources for foundational ideas in high
performance computing
— the 1928 CFL paper laid foundations for today’s HPC

— along with L. F. Richardson’s 1922 book, which was
written in ignorance of the stability limit (more later)




Let’s plug in and see...

« Sound travels approximately 700 mi/hr in the
standard atmosphere, or about 3 x 10* cm/s

 Therefore, for a 1 cm distance between cell
centers

At <Ax/c =3x107 sec



How many operations per second?

* Suppose we want to simulate 1 sec of real
time

* Total operations required are

1 sec y 8 operations/step

3x107 sec/step unknown
or 8x10" operations

* To perform the simulation in real time, we
need 8 x 10 operations per second, or 8

Pflop/s, or, equivalently, one operation every
1.25 x 10-16 sec

x 3 x 10" unknowns



Prefix review

« “flop/s” means “floating point operations per
sec”

1,000| Kiloflop/s | Kf

1,000,000 | Megaflop/s be'apwp}

1,000,000,000| Gigaflop/s | Gf

~

1,000,000,000,000| Teraflop/s | Tf

University lab

—1

J

1,000,000,000,000,000| Petaflop/s | Pf

ﬁ Best in class
As of July 2015, approximately 95 computers in the world were J
known to exceed 1 PF/s on the dense linear algebraic

benchmark, rangingup to 93.01 PF/s.




How big can the computer be?

* Assume signal must travel from one end to the
other in the time it takes to do one operation,
1.25 x 1016 sec

» Light travels about a foot in 10 sec, or 1 cmin 3
x 10! sec

« Maximum size for the computer is therefore
lcm

3x107" sec

or about4 x 10° cm

x1.25x107" sec




How many fit on the head of a pin?

 Pin head has area of about 102
cm?

* For square computers with area |
(4 x 10 cm)2, or 1.6 x 10-'1 cm?, .’/‘ <

there would be

10~
1.6x107""

of our completely causally
connected computers on the
head of a pin

= 6x10°




What is wrong with our

assumptions?
» Signal must cross the computer every
operation
* Perform one operation at a time

» Use simple monolithic algorithm on
uniform grid



How to address these Issues

» Signal must cross the computer every
operation

— Pipelining allows the computer to be “strung
out” within a processor

* Perform one operation at a time

— Parallelism allows many simultaneous
operations on different processors

» Use simple monolithic algorithm on a
uniform grid

— Adaptivity reduces the number of operations
required for a given accuracy



Pipelining
Often, an operation (e.g., a
multiplication of two floating
point numbers) is done in
several stages
input—stage1—stage2—output
Each stage is hosted by a
different piece of hardware

and can be operating on a
different multiplication

The partially assembled
“product” is passed from
stage to stage

Like assembly lines for
airplanes, cars, and many
other products




Consider laundry pipelining

Alex, Briley, Chris, and Drew must each wash (30 min), dry (40 min), and
fold (20 min) laundry. If each waits until the previous is finished, the four
loads require 6 hours.

6 PM 7 8 9 10 11 Midnight
|

L

| Time

30 | 40 |2cx|30 | 40 Izolso ; 40 |20'30 I 40 |2o|

c/o D. Patterson



Laundry pipelining, cont.

If Briley starts the second wash as soon as Alex finishes, and then Chris
starts the third wash as soon as Briley finishes, etc., the four loads require

only 3.5 hours.

6PM 7 8 9 10 11 Midnight
|

|

Note that in the middle of
the task set, all three
stations are in use
simultaneously.

For long streams, ideal
speed-up approaches
three — the number of
available stations.

x 0 n —

Imbalance between the
stages, and pipe filling
and draining effects
make actual speedup
less.

~0o Q~0Q

c/o D. Patterson



Arithmetic pipelining

* An arithmetic operation may have 5 stages
— Instruction fetch (IF)
— Read operands from registers (RD)
— Execute operation (OP)
— Access memory address (AM)

— Write back to memory (WB) @

Actually, each of these
stages may be
superpipelined further!

Time =)
2| IF [rRo [ oP ]| AM | wB
g IF [RD | OP | AM | wB
i IF [ RD | OP | AM | WB




Benefits of pipelining

* Allows the computer to be physically larger

* Signals need travel only from one stage to

the next per clock cycle, not over entire
computer



Problems with pipelining

* Must find many operations to do independently,
since results of earlier scheduled operations are
not immediately available for the next; waiting
may stall pipe

Time ===
Create“x” [ |IF | RD | OP. | AM | WB

Consume “x” IF RD | OP | AM | WB

Conditionals may require partial results to be
discarded

If pipe is not kept full, the extra hardware is
wasted, and machine is slow



Problems with pipelining

* Must find many operations to do independently,
since results of earlier scheduled operations are
not immediately available for the next; waiting
may stall pipe

Time ===

Create “x” IF RD AM | WB
Consume “x” S&] F [rRo [ oP | AM ] wB

Conditionals may require partial results to be
discarded

If pipe is not kept full, the extra hardware is
wasted, and machine is slow



Parallelism

« Often, a large group of operations can be done
concurrently, without memory conflicts

* |n our simple explicit airplane example, each
cell update involves only cells at the previous

level

— All cells at the /+1st level can be updated independently

No purple cell
quantities are
involved in each
other’s stencil
updates.



Parallelism in building a wall

Concurrent construction of a wall using N = 8 bricklayers.
Decomposition by vertical section.

<—Qverlap —>

< L > & b 4 >
—— ] -
. — { D SR
4% —LE\ R %
| I 1 ——
o

Each worker has an interior “chunk” of independent work, but
workers require periodic coordination with their neighbors at their
boundaries. One slow worker will eventually stall the rest. Potential
speedup is proportional to the number of workers, less coordination

overhead.

c/o G. Fox



Vertical task decomposition

The complete problem.

The sub task performed by an individual bricklayer.

L\ ¢ L
1 1 _]

overlap zones

clo G. Fox



Multiple decompositions possible

Concurrent Construction of a wall using N = 8 bricklayers.
Decomposition by horizontal section.

QORTNN
. L]
TTR B WD we EIRTF
N AVEi W AL
s o/ = ’-‘

A horizontal decomposition, rather than vertical, looks like pipelining.
Each worker must wait for the previous to begin; then all are busy

until near the end. Potential speedup is proportional to number of
workers in the limit of an infinitely long wall.

c/o G. Fox



Nonuniform tasks

Decomposition of wall for an irregular geometry.
Equalize number of bricks per mason, not length of wall per mason.

T
1
3
T
{

In the two previous examples, all workers “ran the same
program” on “data” in different locations: single-program,
multiple-data (SPMD). In the example above, there are two
types of programs: one for odd-numbered workers, another
for even-numbered.

(Actually, these are two different parameterizations of
basically the same program.)

Observe that the work is load-balanced; each worker has the
same number of bricks to lay.

c/o G. Fox




Inhomogeneous tasks

An inhomogenous wall with decoration.
Best decomposition uncertain.

| §80%

1 1 1 1
T e T T
1 I I I
s I I
1 T2 1 5 | B
T 1 I
T 1 T I
L 1
I [ 1 1!
B G 1

For this highly irregular wall, the differently placed holes may
require very different amounts of time to position. It may be a
priori difficult to estimate a load-balanced decomposition of
concurrent work.

Building this wall may require dynamic decomposition to
keep each worker busy.

There is a tension between concurrency and irregularity.
Orders are much harder to give for workers on this wall.

c/o G. Fox




Benefits of parallelism

* Allows the computer to be physically larger

* If we had one million computers, then
each computer would only have to do
8x109 operations per second

— say 4 operations per clock on a 2 GHz
processor

* This would allow the computers to be
about 3 cm apart



Parallel processor configurations

In the airplane example, each
processor in the 3D array (left)
can be made responsible for a
3D chunk of space.

The global cross-bar switch is
overkill in this case. A mesh
network (below) is sufficient.

X
@ Processing Unit @ 1fO Unit
z

© Exchanger (S Distributed Disk

¥ <> Crossbar Switch




Estimating scalability of
“stencil computations”

* Given complexity estimates of the leading terms of:

— the concurrent computation (per iteration phase)
— the concurrent communication
— the synchronization frequency

* And a model of the architecture including:

— internode communication (network topology and protocol reflecting
horizontal memory structure)

— on-node computation (effective performance parameters including
vertical memory structure)

* One can estimate optimal concurrency and optimal

execution time

— on per-iteration basis
— simply differentiate time estimate in terms of (N,P) with respect to P,

equate to zero, and solve for P as a function of N



Estimating 3D stencil costs (per iteration)

grid points in each
direction n, total work
N=0(n°)

processors in each
direction p, total procs
P=0(p°)

memory per node
requirements O(N/P)

concurrent execution time per
iteration: A n3/p3

grid points on side of each
processor subdomain: n/p
concurrent neighbor commun.
time per iteration: B n?/p?
cost of global reductions in
each iteration: Clog P or

C P(17d) \where d is dimension

 C includes synchronization
frequency

Same units for measuring A,
B, C

- e.g., cost of scalar floating point
multiply-add



3D stencil computation illustration

Rich local network, tree-based global reductions

Total wall-clock time per iteration

3 2

T(n,p)=A-~+B=+3Clogp
p

p
3 2
3
For optimal p, 2 —_o or -3A oM ¢ o,
op p P P
32B’
o
or (with 0=—--5-),

2C

Do = (i)%([u(l—@)]% +[1—(1—\/§)]%)°n

p can grow linearly with » y
In the limit as 8/-0 p0pt=(é) Y



3D stencil computation illustration

Rich local network, tree-based global reductions

* Optimal running time:

A B
T(l”l, popt(n)) =" 3 + 2 + ClOg(IOI’Z),
PP

where

p=(%)%([l+(l—\/5)]%+[1-(1-\/5)]%)

 Limit of infinite neighbor bandwidth, zero
neighbor latency (B, & approach 0):

I'(n,p,,(n)= C[logn + %log% + const.}



« With tree-based (logarithmic) global
reductions and scalable nearest neighbor
hardware:

— optimal number of processors scales linearly with
problem size

« With 3D torus-based global reductions and
scalable nearest neighbor hardware:

— optimal number of processors scales as three- [ e
fourths power of problem size (almost k
“scalable™)

« With common network bus (heavy
contention):

— optimal number of processors scales as one-
fourth power of problem size (not “scalable™) e




In 1965, Gordon Moore of
Intel observed an
exponential growth in the
number of transistors per
integrated circuit and
optimistically predicted
that this trend would
continue.

It did.
For about 40 years...

“Moore’ s Law”
informally refers to a
doubling of transistors
per chip every 18-24
months, which translates
into performance, though
not quite at the same
rate.

c/o Intel

Moore’ s Law

CPU Transistor Counts, 1970-2010 and Moore’s Law
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The original Moore paper (1965

“Integrated circuits will lead to such wonders as | Cramming more components
home computers [...], automatic controls for
automobiles, and personal portable
communications equipment. The electronic
wristwatch needs only a display to be feasible

onto integrated circuits

With unit cost falling as the number of components per
circuit rises, by 1975 ics may di ing as

q g9

many as 65,000 components on a single silicon chip

By Gordon E. Moore
Director, Research and L Fairchild
division of Fairchild Camera and Instrument Corp.

today... Computers will be more powerful, and

will be organized in completely different way
For example, memories built of integrated
electronics may be distributed throughout the
machine instead of being concentrated in a

central unit.”

The future of integrated electronics is the future of electron-
ics itself. The advantages of integration will bring about a
ghation of electronics, pushing this science into many

ated circuits will lead to such wonders as home

's—or at least terminals connected to a central com-

puter—: ic controls for biles, and personal

portable icati i The el ic wrist-
watch needs only a display to be feasible today.

But the biggest potential lies in the production of large
systems. In icati i d circuits
in digital filters will separate channels on multiplex equip-
ment. Integrated circuits will also switch telephone circuits
and perform data processing.

Computers will be more powerful, and will be organized
in completely different ways. For example, memories built
of integrated electronics may be distributed throughout the

The author

Dr. Gordon E. Moore is one of
the new breed of electronic
engineers, schooled in the
physical sciences rather than in
electronics. He eamed a B.S.

machine instead of being concentrated in a central unit. In
addition, the improved reliability made possible by integrated
circuits will allow the construction of larger processing units.
Machines similar to those in existence today will be built at
lower costs and with faster tum-around.

Present and future

By integrated electronics, I mean all the various tech-
nologies which are referred to as microelectronics today as
well as any additional ones that result in electronics func-
tions supplied to the user as irreducible units. These tech-
nologies were first investigated in the late 1950’s. The ob-
ject was to miniaturize electronics equipment to include in-
creasingly complex electronic functions in limited space with
minimum weight. Several approaches evolved, including

i bly techni for individual thin-
film structures and semiconductor integrated circuits.

Each approach evolved rapidly and converged so that
each borrowed techniques from another. Many researchers
believe the way of the future to be a combination of the vari-
ous approaches.

The of semicond| i d circuitry are
already using the improved characteristics of thin-film resis-
tors by applying such films directly to an active semiconduc-

© degree in chemistry from the tor substrate. Those advocating a technology based upon

15 :,‘:'L';"::g:.?:g"’::‘""d a films are developing sophisticated techniques for the attach-
-3 14 ch«ﬁhwy from mycmnomu ment of active semiconductor devices to the passive film ar-
E 3 Institute of Technology. He was rays.
s c : / ;’:ﬂo‘c"";:"""d": :":’t‘:.’“'d Both approaches have worked well and are being used

12 onductor an n PRSP, |
g % . / director of the research and in equipmenttoday.
o2 1 development laboratories since
5 oo / 1959.
S e ¢
58 ¢ s Electronics, Volume 38, Number 8, April 19, 1965
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Average number of processor cores in a

supercomputer
Top20 of the TopS500 1,022,916
100,000
90,000 Exponential growth in parallelism
80,000 for the foreseeable future
70,000
60,000
50,000
40,000
30,000
20,000
10,000 i I
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Aside

Most of the world’s supercomputers are ranked
against each other about every six months, at

ISC’xy (June) and SC’xy (November),
respectively

500 top computers are ranked by the High

Performance Linpack (HPL) benchmark

HPL measures the rate at which a computer can
perform dense Gaussian elimination with partial
pivoting

We take a brief look at the Top 10 computers

ranked by the High Performance Linpack (HPL)
benchmark




#1-ranked TaihuLight by Sunway / NRCPC

10,649,600 processor cores on
40,960 SW26010 chips (125.4 PetaFlop/s)
Global #1 ranked system (China first entered Top 50 in 2008)



#2-ranked Tianhe-2 by Inspur / NUDT / Intel

3,120,000 processor cores on
32K lvy Bridge + 48K Xeon Phi chips (54.9 PetaFlop/s)



USLC

OE’s Top 10 petascale systems

#3 Cray XK7 sgidia
“Titan” (ORNL) '

4 IBM BlueGene/Q
“Sequoia” (LLNL)

#6 IBM BlueGene/Q
~ "Mira” (ANL)

#/7 Cray XC40
“Trinity” (LANL)



More Top 10 petascale systems

45 Fujitsu
“Kei” (Riken) §

e
#9 Cray XC40
“Hazel Hen” (HLRS)




KAUST's Top 10 system

2 7 5

#10 Cray XC40 “Shaheen”

#10 on HPL: High Performance Linpack (76% of theoretical peak)
#12 on HPCG: High Performance Conjugate Gradient (1.6% of theoretical peak)
#4 on HPGMG: High Performance Geometric Multigrid (~0.65% of theoretical peak)

We shall study the basis for all three benchmarks: dense
direct solvers, sparse Krylov solvers, and multilevel solvers



Aside

« The primary supercomputer used for exercises
In this course, Blue Waters, hosted by UIUC for
the National Center for Supercomputer
Applications (NCSA) would be approximately #5
on the TOPS5O00 list, if it participated

Since HPL is not representative of the majority of
large scale computational science and
engineering applications, and since it requires
significant resources to run, the NCSA has
declined to submit




1979: Computational Fluid Dynamics for B767

BMuch CFD penetration. Bsome CFD penetration. B CFD penetration opportunity
Opportunities exist for higher _ Opport_unities_; exist for large
accuracy and expanded complexity increases in design process speed

and application

High-Speed Wing

Design\ / =

Cab Design

e

~galrmg Design

nglne/Alrframe
Integration —

- —

c/o Douglas Ball, Boeing



2005: Computational Fluid Dynamics for B787

BMuch CFD penetration. Bsome CFD penetration. B CFD penetration opportunity
Opportunities exist for higher _ Opport_unities_, exist for large
accuracy and expanded complexity increases in design process speed

and application
Wind Tunnel
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c/o Douglas Ball, Boeing



Simulation driven by price and
capability

By the Gordon Bell Prize, simulation cost per performance has
improved by nearly a million times in two decades. Performance
on real applications (e.g., mechanics, materials, petroleum
reservoirs, etc.) has improved more than a million times.

Gordon Bell

o e COSt per e peak  Gigaflop/s
Performance delivered Performance delivered tO
Year Gigaflop/s Year applications
1989 S$2,500,000 1988 1
1999 $6,900 1998 1,020

2009 S8 2008 1,350,000



Gordon Bell Prize outpaces Moore’ s Law

10"

10"

10"

10°

CONCUR-
RENCY!!!

mi Moore>>

Bell Peak Performance Prizes (flop/s)
i\?B Gordon Bell
jorg@ioore
PDE
PD Three orders
% of magnitude
every 10 years

1990 1995 2000



Problems with parallelism

Must find massive concurrency in the task

Still need many computers, each of which
must be fast

Communication between computers
becomes a dominant factor

Amdahl’ s Law limits speedup available
based on remaining non-concurrent work



The original Amdahl paper (1967

“The physical problems which are of practical
interest tend to have rather significant
complications. Examples are as follows:
boundaries are likely to be irregular; interiors
are likely to be inhomogeneous; computations
required may be dependent upon the states of
the variables at each point; propagation rates
of different physical effects may be quite
different; the rate of convergence, or

convergence at all, may be strongly depende
upon sweeping through the array along
different axes on succeeding passes; etc.”

Validity of the single processor
approach to achieving large scale

computing capabilities

by DR. GENE M. AMDAHL
International  Business  Machines
Sunnyvale, California

Corporation

INTRODUCTION
For over a decade prophets have voiced the con-
tention that the organization of a single
has reached its limits and that truly significant
advances can be made only by interconnection of a
multiplicity of computers in such a manner as to
permit cooperative solution. Variously the proper
direction has been pointed out as general purpose
computers with a generalized interconnection of
ies, or as specialized with geo-
metrically related memory interconnections and con-
trolled by one or more instruction streams.
Demonstration is made of the inued validity

cessing rate, even if the housckeeping were done in
a separate processor. The non-housekeeping part
of the problem could exploit at most a processor of
performance three to four times the performance of
the housekeeping processor. A fairly obvious con-
clusion which can be drawn at this point is that the
effort expended on achieving high parallel processing
rates is wasted unless it is accompanied by achieve-
ments in sequential processing rates of very nearly
the same magnitude.

Data management housekeeping is not the only

problem to plague oversimglnﬁcd approaches to high

of the single processor approach and of the weak-

speed computation. The physical problems which are
of practical interest tend to have rather significang

nesses of the multiple p pp h in terms
of ication to real pi and their d:
irregularities.

The arguments presented are based on statistical

e most thorough analyses
of relative p bilities currently p
“Changes in Computer Performance,” Datamation,
September 1966, Professor Kenneth E. Knight,
Stanford School of Business Administration.

The first characteristic of interest is the fraction
of the computational load which is associated with
data management housekeeping. This fraction has
been very nearly constant for about ten years, and
accounts for 40% of the executed instructions in
production runs. In an entirely dedicated special
purpose environment this might be reduced by a
factor of two, but it is highly improbably that it could
be reduced by a factor of three. The nature of this
overhead appears to be sequential so that it is unlikely
to be amenable to parallel processing techniques.
Overhead alone would then place an upper limit on
throughput of five to seven times the sequential pro-

483

p Examples of these complicationy
are as follows: boundaries are likely to be irregular
interiors are likely to be inhomogeneous; computaf
tions required may be dependent on the states of
the variables at each point; propagation rates of
different physical effects may be quite different; thg
rate of convergence, or convergence at all, may b
strongly dependent on sweeping through the array

effect of each of these complications is very severe
on any or based on ically
related processors in a paralleled processing system.
Even the existence of regular rectangular boundaries
has the interesting property that for spatial dimension
of N there are 3" different point geometries to be
dealt with in a nearest neighbor computation. If the
second nearest neighbor were also involved, there
would be 5 different point geometries to contend
with. An irregular boundary compounds this problem
as does an inh interior. C i

which are dependent on the states of variables would
require the processing at each point to consume
pproxi ly the same ional time as the
sum of computations of all physical effects within a




Amdahl’ s Law (1967)

In 1967 Gene Amdahl of Cray Computer formulated his famous
pessimistic formula about the speedup available from concurrency. If
f'is the fraction of the code that is parallelizable and P is the number

of processors available, then the time 7, to run on P nodes as a

function of the time T, to run on 1 is:

TP=f%+(1_f)Tl' 10000

What is the speed-up 2. 10001
available? o

Q 100
T @

Speedup =1 = 10
I, (I-H)+f/P

: 1 I

lim Speedup =

= (1-/)

4

Number of processors

16

64

246

1024

Of=0.8
mf=0.9
B f=0.95
Of=0.99
B f=0.999
Hmf=1.0




Most basic issue: algorithm!

Our prime problem and opportunity,
however, Is not architectural!

It is that we are computing more data than
we need!

We should compute only where needed
and only what needed

Algorithms that do this effectively, while
controlling accuracy, are called adaptive



Adaptive algorithms

* For an airplane, we need 1 cm (or better)
resolution only in boundary layers and
shocks
— Elsewhere, much coarser (e.g., 10 cm) mesh

resolution is sufficient

A factor of 10 less resolution in each
dimension reduces computational
requirements by 103



Adaptive Cartesian mesh

inviscid shock

near field

far fieloi’




Adaptive triangular mesh
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Unstructured grid for complex geometry
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How does the discretization work?
Just like before, except for geometry

Construct “grid” of triangles

Construct “control volumes”
surrounding each vertex

Compute effluxes

Compute influxes

Finally, sum all fluxes and sources (with proper sign) and
adjust value at vertex; then loop over all such vertices.



Scientific visualization adds insight
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Computer becomes an experimental laboratory, like
windtunnel, and can be outfitted with diagnostics and
imaging intuitive to windtunnel experimentalists.



Benefits of adaptivity, cont.

* |If adaptivity reduces storage and operation
requirements by 1000, this leaves 8 x 1012
operations per second, or 8 Tflop/s

* This is readily available today
— for a modest price compared to cost of plane
— e.g., in a handful of GPUs (!)
— drawing a few KiloWatts

* However, detailed aerodynamics codes are not
routinely employed in automated real-time loops
— providing accurate initial and boundary conditions is a

challenge
— reduced-order models based on ready observables

are more practical



Problems with adaptivity

Difficult to guarantee accuracy

— much more mathematics to be done for realistic
computer models

Difficult to program
— complex dynamic data structures

Can’t always help

— sometimes resolution really is needed everywhere,
e.g., in wave propagation problems

May not work well with pipelining and parallel

techniques

— tension between conflicting needs of local focusing of
computation and global regularity



Conclusions

Parallel networks of commodity pipelined
microprocessors offer cheap, fast, powerful
supercomputing

 Algorithm development offers better, more

efficient ways to use all computers

Riding the waves of architectural advancements
and creating improved simulation techniques
opens up new vistas for computational science
across the spectrum



Summary

Application — computational aerodynamics

Numerical analysis — discretization of
conservation laws

Courant stability limit (1928) — speed of sound
Hardware limit— speed of light

Computer architecture — pipelining & parallelism
Moore’s Law (1965)

Amdahl's Law (1967)

Power of adaptive, optimal algorithms

Bell Prizes (1988 onwards)

Cost-effective future of simulation
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