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A representative simulation 

•  Suppose we wish to model the flow about a 
business jet in real time, e.g., 
–  real-time control of flaps, slats, rudder 
–  aero-elastic response 
–  self-healing adaptations 

•  Circumscribing box is about 30×20×10 m3 

•  Want velocity, density, pressure in every 
centimeter-sized cell ⇒ 6,000,000,000 points 

•  Velocity has 3 components, so there are 5 
unknowns per point ⇒ 30,000,000,000 or  

    3 ×1010 unknowns 



What do we compute? 
•  Balance fluxes of mass, momentum, energy 

–  conservation of mass (1 equation per cell) 
–  Newton’s second law (3 equations per cell) 
–  first law of thermodynamics (1 equation per cell) 

•  Take conservation of mass as an example 
–  “The time rate of change of mass in the cell 

balances the flux of mass convected into or out of 
the cell.” 

–  As a partial differential equation, we write for mass 
density ρ and velocity v: 

ρ = −∇•(ρv)



Discrete conservation laws 
•  For a computer, we need to discretize  

–  convert continuously posed partial differential equation into 
algebraic form 

–  then convert the algebra into an arithmetic algorithm 
–  we code the algorithm in floating point computer arithmetic 

•  Flux balances can be drawn up for mass, 
momentum, and energy in each cell 

•  Simplest first attempt at data structure: center the 
cells on an integer lattice 
–  index i runs in the x direction ,  j in y ,  and k in z 
–  time level l runs over different copies of the spatial lattice 
–  store a value in each cell and alternatively update copies 



Conservation of mass 
•  In three dimensions and Cartesian coordinates                                  

•  Differential equation expands in 3D to                   
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Discretize the derivatives 
•  Let ρ(xi,yj,zk,tl) be approximated as ρl

ijk , with 
shorthand for lower dimensions 

•  We can estimate the gradient of the mass flux 
over the +x  face of the cell as follows 

•  Similar expressions may be developed for the y 
and z derivatives, covering all six faces 

∂(ρu)
∂x i

≈
1
Δx
[(ρu)i+1/2 − (ρu)i−1/2 ]

i i+1 i+2 i-2 i-1 

xΔ



Discretization, continued 
•  Note that each facial flux appears in the balance of 

the two cells on either side of the face 
–  observations like this can allow re-use of intermediates 
–  for this introduction, we ignore such details of spatial and 

temporal locality, which are important in practice 

•  Estimate the time derivative similarly, using a 
promotion of the superscript (“forward difference”) 

∂ρ
∂t ijk

l

≈
1
Δt
[ρijk

l+1 − ρijk
l ] l is “current” 

l+1 is “next” 



Discretization, continued 
 
•  These derivative approximations are not the most 

accurate possible, nor are they universally chosen 
–  sometimes, unknowns are staggered at different 

locations per cell 
–  accuracy improves here as first power of         and 
–  often, faster rates of convergence are sought 
–  for a fixed order, accuracy increases as mesh is refined 
–  for a fixed mesh, accuracy increases as the order is 

raised 
–  at least second-order is frequently achieved in practice 
–  in recent research targeting many-core machines, we 

have used up to 32nd order (!) 
  

xΔ tΔ



Discrete mass conservation 
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Estimating the half-cell quantities 

ρu( )
i+1/2, jk

l
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1
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ρu( )
ijk

l
+ ρu( )

i+1, jk
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•  Relating the staggered quantities on the right-hand 
side to the original grid functions, we get 

    and five similar expressions  
•  This completes the discretization of the law of 

conservation of mass 



Additional conservation laws 
•  Similar flux balances can be drawn up for 

momentum and energy in each cell 
•  These fluxes are slightly more complex and are 

modeled in terms of second derivatives (or 
higher) 

•  See a Mathematical Modeling course in AeroE, 
MechE, ChemE, ElecE, etc., to understand how 
the terms to be discretized for computation arise 
physically 

•  See a Numerical Analysis of PDEs course to see 
how higher-order discretizations can be 
developed 



Aside 
•  Often in this course, we need to appeal to 

results from disciplines that we cannot presume 
all students will have seen 
–  High performance computing has been motivated, 

historically, by problems in science and engineering 
and our examples are largely drawn from these 

•  To succeed in the course, concentrate on what 
is in common and developed internally to our 
lecture series 

•  To succeed in life, aggressively expand your 
knowledge into adjacent areas 



Stencil for mass conservation 
in one space dimension 

l+1 

l 



How much computation? 
•  For our 7-point spatial discretization in 3D, and 

first-order temporal discretization, each equation 
at each point (a “stencil operation”) at each 
computational time step requires roughly 8 
arithmetic operations 
–  more efficient stencil evaluations on emerging 

manycore architecture hardware, memory-bandwidth 
limited, is a hot topic 

•  How many computational time steps? 
–  how much real time must be simulated? 
–  how big can the time step        be? tΔ



Computational stability 
•  It turns out (beyond the scope of this introductory 

lecture) that the computational simulation will “blow 
up” if the algorithm tries to outrun “causality” in 
nature with too large a time step 
–  waves propagate with finite speed 
–  wave speed defines for each point (x,y,z,t) a spatial 

“domain of dependence” on data from earlier times 
–  if this domain of dependence is not respected, small errors 

can be amplified (and floating point computations always 
create small rounding errors) 

–  this is known as numerical instability 



Computational stability, cont. 
•  The computational time step must be small enough 

that the fastest wave admitted by the governing 
equations does not  cross an entire cell in a single 
time step 
–  the computational domain of dependence must include the 

entire physical domain of dependence 
•  For our compressible flow, information propagates at 

the speed of sound  
•  For speed c , Courant, Friedrichs, and Levy in 1928 

told us: 

•  This is the “CFL stability criterion” for a wave 
equation 

Δt < Δx / c



The original CFL paper (1928) 
“Problems involving the classical linear 
partial differential equations of mathematical 
physics can be reduced to algebraic ones of 
a very much simpler structure by replacing 
the differentials by difference quotients on 
some (say rectilinear) mesh. This paper will 
undertake an elementary discussion  of 
these algebraic problems, in particular of the 
behavior of the solution as the mesh width 
tends to zero.” 

time 

space 

A finite sloped line in space-
time represents a signal 
velocity.  Points later in time 
depend upon information 
from earlier time; spatial 
spread grows with signal 
velocity. Numerical domain 
of dependence must include 
the physical domain of 
dependence, by taking 
timesteps sufficiently small. 

not 
OK 

 OK 



Aside 
•  We will look experimentally at the consequences 

of violating the Courant-Friedrichs-Levy stability 
limit later in the course 
–  the theory is not difficult, but better developed in a 

numerical analysis course 
•  Throughout this course, including three times 

today, we will direct the curious student to 
original sources for foundational ideas in high 
performance computing 
–  the 1928 CFL paper laid foundations for today’s HPC 
–  along with L. F. Richardson’s 1922 book, which was 

written in ignorance of the stability limit (more later)  



Let’s plug in and see… 

•  Sound travels approximately 700 mi/hr in the 
standard atmosphere, or about 3 × 104 cm/s 

•  Therefore, for a 1 cm distance between cell 
centers 

€ 

Δt ≤ Δx /c ≈ 3×10−5 sec



How many operations per second? 

•  Suppose we want to simulate 1 sec of real 
time 

•  Total operations required are 

    or                operations 
•  To perform the simulation in real time, we 

need 8 × 1015 operations per second, or 8 
Pflop/s, or, equivalently, one operation every 
1.25 × 10-16 sec 

1 sec
3×10−5 sec/step

×
8 operations/step

unknown
×3×1010unknowns

15108×



Prefix review 

•  “flop/s” means “floating point operations per 
sec” 

1,000 Kiloflop/s Kf 
1,000,000 Megaflop/s Mf 

1,000,000,000 Gigaflop/s Gf 
1,000,000,000,000 Teraflop/s Tf 

1,000,000,000,000,000 Petaflop/s Pf 

Your laptop 

University lab 

Best in class 
As of July 2015, approximately   __  computers in the world were 
known to exceed 1 PF/s on the dense linear algebraic 
benchmark, ranging up to    ____    PF/s. 

95 

93.01 



How big can the computer be? 

•  Assume signal must travel from one end to the 
other in the time it takes to do one operation, 
1.25 × 10-16  sec 

•  Light travels about a foot in 10-9 sec, or 1 cm in 3 
× 10-11 sec 

•  Maximum size for the computer is therefore 

    or  about 4 × 10-6 cm 

sec1025.1
sec103

cm1 16
11

−
−

××
×



How many fit on the head of a pin? 
•  Pin head has area of about 10-2 

cm2 

•  For square computers with area 
(4 x 10-6 cm)2, or 1.6 × 10-11 cm2, 
there would be 

    of our completely causally   
connected computers on the 
head of a pin  
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What is wrong with our 
assumptions? 

•  Signal must cross the computer every 
operation 

•  Perform one operation at a time 
•  Use simple monolithic algorithm on 

uniform grid 



How to address these issues 
•  Signal must cross the computer every 

operation 
– Pipelining allows the computer to be “strung 

out” within a processor 
•  Perform one operation at a time 

– Parallelism allows many simultaneous 
operations on different processors 

•  Use simple monolithic algorithm on a 
uniform grid 
– Adaptivity reduces the number of operations 

required for a given accuracy 



Pipelining 
•  Often, an operation (e.g., a 

multiplication of two floating 
point numbers) is done in 
several stages 
 input→stage1→stage2→output 

•  Each stage is hosted by a 
different piece of hardware 
and can be operating on a 
different multiplication 

•  The partially assembled 
“product” is passed from 
stage to stage 

•  Like assembly lines for 
airplanes, cars, and many 
other products  

 



Consider laundry pipelining 
Alex, Briley, Chris, and Drew must each wash (30 min), dry (40 min), and 
fold (20 min) laundry.  If each waits until the previous is finished, the four 
loads require 6 hours. 

c/o D. Patterson 



Laundry pipelining, cont. 
If Briley starts the second wash as soon as Alex finishes, and then Chris 
starts the third wash as soon as Briley finishes, etc., the four loads require 
only 3.5 hours. 

Note that in the middle of 
the task set, all three 
stations are in use 
simultaneously. 

For long streams, ideal 
speed-up approaches 
three – the number of 
available stations. 

Imbalance between the 
stages, and pipe filling 
and draining effects 
make actual speedup 
less. 

c/o D. Patterson 



Arithmetic pipelining 
•  An arithmetic operation may have 5 stages 

–  Instruction fetch (IF) 
–  Read operands from registers (RD) 
–  Execute operation (OP) 
–  Access memory address (AM) 
–  Write back to memory (WB) 

IF OP AM WB RD 

IF OP AM WB RD 

IF OP AM WB RD 

Instructions 

Time 

…
Actually, each of these 
stages may be 
superpipelined further! 



Benefits of pipelining 

•  Allows the computer to be physically larger 
•  Signals need travel only from one stage to 

the next per clock cycle, not over entire 
computer 



Problems with pipelining 
•  Must find many operations to do independently, 

since results of earlier scheduled operations are 
not immediately available for the next; waiting 
may stall pipe 

•  Conditionals may require partial results to be 
discarded 

•  If pipe is not kept full, the extra hardware is 
wasted, and machine is slow 

IF OP AM WB RD Create “x” 

Consume “x” IF OP AM WB RD 

Time 



Problems with pipelining 
•  Must find many operations to do independently, 

since results of earlier scheduled operations are 
not immediately available for the next; waiting 
may stall pipe 

•  Conditionals may require partial results to be 
discarded 

•  If pipe is not kept full, the extra hardware is 
wasted, and machine is slow 

IF OP AM WB RD 

IF OP AM WB RD stall 

Create “x” 

Consume “x” 

Time 



Parallelism 
•  Often, a large group of operations can be done 

concurrently, without memory conflicts 
•  In our simple explicit airplane example, each 

cell update involves only cells at the previous 
level 
–  All cells at the l+1st level can be updated independently 

No purple cell 
quantities are 
involved in each 
other’s stencil 
updates. 



Parallelism in building a wall 

Each worker has an interior “chunk” of independent work, but 
workers require periodic coordination with their neighbors at their 
boundaries.  One slow worker will eventually stall the rest. Potential 
speedup is proportional to the number of workers, less coordination 
overhead. 

c/o G. Fox 



Vertical task decomposition 

overlap zones 

c/o G. Fox 



Multiple decompositions possible 

c/o G. Fox 

A horizontal decomposition, rather than vertical, looks like pipelining. 
Each worker must wait for the previous to begin; then all are busy 
until near the end. Potential speedup is proportional to number of 
workers in the limit of an infinitely long wall. 



Nonuniform tasks 

In the two previous examples, all workers “ran the same 
program” on “data” in different locations: single-program, 
multiple-data (SPMD).  In the example above, there are two 
types of programs: one for odd-numbered workers, another 
for even-numbered. 

(Actually, these are two different parameterizations of 
basically the same program.) 

Observe that the work is load-balanced; each worker has the 
same number of bricks to lay. 

c/o G. Fox 



Inhomogeneous tasks 

For this highly irregular wall, the differently placed holes may 
require very different amounts of time to position.  It may be a 
priori difficult to estimate a load-balanced decomposition of 
concurrent work. 

Building this wall may require dynamic decomposition to 
keep each worker busy. 

There is a tension between concurrency and irregularity. 
Orders are much harder to give for workers on this wall. 

c/o G. Fox 



Benefits of parallelism 

•  Allows the computer to be physically larger 
•  If we had one million computers, then 

each computer would only have to do 
8×109 operations per second  
– say 4 operations per clock on a 2 GHz 

processor 
•  This would allow the computers to be 

about 3 cm apart 



Parallel processor configurations 
In the airplane example, each 
processor in the 3D array (left) 
can be made responsible for a 
3D chunk of space. 

The global cross-bar switch is 
overkill in this case.  A mesh 
network (below) is sufficient. 



Estimating scalability of  
“stencil computations”  

•  Given complexity estimates of the leading terms of: 
–  the concurrent computation (per iteration phase) 
–  the concurrent communication 
–  the synchronization frequency 

•  And a model of the architecture including: 
–  internode communication (network topology and protocol reflecting 

horizontal memory structure) 
–  on-node computation (effective performance parameters including 

vertical memory structure) 

•  One can estimate optimal concurrency and optimal 
execution time 
–  on per-iteration basis 
–  simply differentiate time estimate in terms of (N,P) with respect to P, 

equate to zero, and solve for P as a function of N 



 Estimating 3D stencil costs (per iteration) 

•  grid points in each 
direction n, total work 
N=O(n3) 

•  processors in each 
direction p, total procs 
P=O(p3) 

•  memory per node 
requirements O(N/P) 

•  concurrent execution time per 
iteration:  A n3/p3 

•  grid points on side of each 
processor subdomain:  n/p 

•  concurrent neighbor commun. 
time per iteration:  B n2/p2 

•  cost of global reductions in 
each iteration:  C log P or        
C P(1/d), where d is dimension 
•  C  includes synchronization 

frequency 

•  Same units for measuring  A, 
B, C  
•  e.g., cost of scalar floating point 

multiply-add 



3D stencil computation illustration 
Rich local network, tree-based global reductions 

•  Total wall-clock time per iteration 

•  For optimal p,            , or   
     

    or (with                  ), 
   

•   p can grow linearly with n  
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3D stencil computation illustration  
Rich local network, tree-based global reductions 

•  Optimal running time: 
 
 

     where 
 

 
•  Limit of infinite neighbor bandwidth, zero 
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•  With tree-based (logarithmic) global 
reductions and scalable nearest neighbor 
hardware: 
–  optimal number of processors scales linearly with 

problem size 

•  With 3D torus-based global reductions and 
scalable nearest neighbor hardware: 
–  optimal number of processors scales as three-

fourths power of problem size (almost 
“scalable”) 

•  With common network bus (heavy 
contention): 
–  optimal number of processors scales as one-

fourth  power of problem size (not “scalable”) 

Scalability results for 3D stencil computations 



Moore’s Law 
In 1965, Gordon Moore of 
Intel observed an 
exponential growth in the 
number of transistors per 
integrated circuit and 
optimistically predicted 
that this trend would 
continue.    

It did. 

For about 40 years… 

“Moore’s Law” 
informally refers to a 
doubling of transistors 
per chip every 18-24 
months, which translates 
into performance, though 
not quite at the same 
rate. 

c/o Intel 

CPU Transistor Counts, 1970-2010 and Moore’s Law 



The original Moore paper (1965) 
“Integrated circuits will lead to such wonders as 
home computers […], automatic controls for 
automobiles, and personal portable 
communications equipment.  The electronic 
wristwatch needs only a display to be feasible 
today... Computers will be more powerful, and 
will be organized in completely different ways.  
For example, memories built of integrated 
electronics may be distributed throughout the 
machine instead of being concentrated in a 
central unit.” 



Avera 
Average number of processor cores in a 

supercomputer 

… 

1,022,916 



Aside 
•  Most of the world’s supercomputers are ranked 

against each other about every six months, at 
ISC’xy (June) and SC’xy (November), 
respectively 

•  500 top computers are ranked by the High 
Performance Linpack (HPL) benchmark 

•  HPL measures the rate at which a computer can 
perform dense Gaussian elimination with partial 
pivoting 

•  We take a brief look at the Top 10 computers 
ranked by the High Performance Linpack  (HPL) 
benchmark 



#1-ranked TaihuLight by Sunway / NRCPC 

10,649,600 processor cores on 
40,960 SW26010 chips (125.4 PetaFlop/s) 

Global #1 ranked system (China first entered Top 50 in 2008) 



#2-ranked Tianhe-2 by Inspur / NUDT / Intel 

3,120,000 processor cores on 
32K Ivy Bridge + 48K Xeon Phi chips (54.9 PetaFlop/s) 



 US DOE’s Top 10 petascale systems 

 #3 Cray XK7 
“Titan” (ORNL) 

      #6 IBM BlueGene/Q 
“Mira” (ANL) 

#4 IBM BlueGene/Q 
“Sequoia” (LLNL) 

#7 Cray XC40 
“Trinity” (LANL) 



 More Top 10 petascale systems 

     #5 Fujitsu 
“Kei” (Riken) 

   #9 Cray  XC40 
“Hazel Hen” (HLRS) 

#8 Cray XC30 
“Piz Daint” (CSCS) 



#10 on HPL: High Performance Linpack (76% of theoretical peak) 
#12 on HPCG: High Performance Conjugate Gradient (1.6% of theoretical peak) 
#4 on HPGMG: High Performance Geometric Multigrid (~0.65% of theoretical peak) 

KAUST’s Top 10 system 

   #10 Cray  XC40 “Shaheen” 

We shall study the basis for all three benchmarks: dense 
direct solvers, sparse Krylov solvers, and multilevel solvers  
 



Aside 
•  The primary supercomputer used for exercises 

in this course, Blue Waters, hosted by UIUC for 
the National Center for Supercomputer 
Applications (NCSA) would be approximately #5 
on the TOP500 list, if it participated 

•  Since HPL is not representative of the majority of 
large scale computational science and 
engineering applications, and since it requires 
significant resources to run, the NCSA has 
declined to submit 



1979:	  Computa-onal	  Fluid	  Dynamics	  for	  B767	  

High-Speed Wing 
Design 

Cab Design 

Engine/Airframe 
Integration 

Inlet Design 

Wing-Body 
Fairing Design 

Nacelle Design 

Much CFD penetration. 
Opportunities exist for higher 

accuracy and expanded complexity 

Some CFD penetration. 
Opportunities exist for large 

increases in design process speed 
and application 

CFD penetration opportunity 

c/o Douglas Ball, Boeing 



2005:	  Computa-onal	  Fluid	  Dynamics	  for	  B787	  

High-Speed Wing 
Design 

Cab Design 

Engine/
Airframe 

Integration 

Inlet Design 
Inlet Certification 

Exhaust 
System Design 

Cabin 
Noise 

Community Noise 

Wing-Body 
Fairing Design 

Vertical Tail 
and Aft Body 

Design 
Design For 
Stability & 

Control 

High-Lift 
Wing Design 

APU Inlet 
And Ducting 

ECS Inlet 
Design 

APU and Propulsion 
Fire Suppression 

Nacelle Design 

Thrust Reverser 
Design 

Design for FOD 
Prevention 

Aeroelastics 

Much CFD penetration. 
Opportunities exist for higher 

accuracy and expanded complexity 

Some CFD penetration. 
Opportunities exist for large 

increases in design process speed 
and application 

Icing 

Air Data 
System 

Location 

Connexion 
Antenna 

Vortex Generator 
Placement 

Planform 
Design 

Buffet 
Boundary 

Wake Vortex Alleviation 
Reynolds Number 

Corrections for Loads and 
S&C 

Flutter 

Control Failure 
Analysis 

Wind Tunnel 
Corrections 

Design For 
Loads 

Wing Tip Design 

Wing 
Controls 

Avionics Cooling 

Interior 
Air 

Quality 

Engine Bay Thermal Analysis 

CFD penetration opportunity 

c/o Douglas Ball, Boeing 



Simulation driven by price and 
capability 

	  
	  

Year	  

Cost	  per	  
delivered	  
Gigaflop/s	  

1989	   $2,500,000	  	  	  	  	  	  	  	  
1999	   $6,900	  
2009	   $8	  

	  
	  

Year	  

Gigaflop/s	  
delivered	  to	  
applica-ons	  

1988	   1	  
1998	   1,020	  
2008	   1,350,000	  

By the Gordon Bell Prize, simulation cost per performance has 
improved by nearly a million times in two decades. Performance 
on real applications (e.g., mechanics, materials, petroleum 
reservoirs, etc.) has improved more than a million times. 

Gordon Bell 
Prize: Peak 

Performance 

Gordon Bell 
Prize: Price 

Performance 



Gordon Bell Prize outpaces Moore’s Law 

Three orders 
of magnitude 
every 10 years 

Gordon Moore 

Gordon Bell 

<<Demi Moore>> 

CONCUR-
RENCY!!! 



Problems with parallelism 
•  Must find massive concurrency in the task 
•  Still need many computers, each of which 

must be fast 
•  Communication between computers 

becomes a dominant factor 
•  Amdahl’s Law limits speedup available 

based on remaining non-concurrent work 



The original Amdahl paper (1967) 
“The physical problems which are of practical 
interest tend to have rather significant 
complications.  Examples are as follows: 
boundaries are likely to be irregular; interiors 
are likely to be inhomogeneous; computations 
required may be dependent upon the states of 
the variables at each point; propagation rates 
of different physical effects may be quite 
different; the rate of convergence, or 
convergence at all, may be strongly dependent 
upon sweeping through the array along 
different axes on succeeding passes; etc.” 



 
Amdahl’s Law (1967) 
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In 1967 Gene Amdahl of Cray Computer formulated his famous 
pessimistic formula about the speedup available from concurrency. If 
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What is the speed-up 
available? 



Most basic issue: algorithm! 
•  Our prime problem and opportunity, 

however, is not architectural! 
•  It is that we are computing more data than 

we need! 
•  We should compute only where needed 

and only what needed 
•  Algorithms that do this effectively, while 

controlling accuracy, are called adaptive 



Adaptive algorithms 
•  For an airplane, we need 1 cm (or better) 

resolution only in boundary layers and 
shocks 
– Elsewhere, much coarser (e.g., 10 cm) mesh 

resolution is sufficient 
•  A factor of 10 less resolution in each 

dimension reduces computational 
requirements by 103 



Adaptive Cartesian mesh 

far field 
near field 

inviscid shock 



Adaptive triangular mesh 

viscous boundary layer 



Unstructured grid for complex geometry 

slat flaps 



How does the discretization work? 
Just like before, except for geometry 

Construct “grid” of triangles 

Construct “control volumes” 
surrounding each vertex 

Compute effluxes 

Compute influxes 

Compute internal sources 

Finally, sum all fluxes and sources (with proper sign) and 
adjust value at vertex; then loop over all such vertices. 



Scientific visualization adds insight 

Computer becomes an experimental laboratory, like a 
windtunnel, and can be outfitted with diagnostics and 
imaging intuitive to windtunnel experimentalists. 



Benefits of adaptivity, cont. 
•  If adaptivity reduces storage and operation 

requirements by 1000, this leaves 8 × 1012 
operations per second, or 8 Tflop/s 

•  This is readily available today  
–  for a modest price compared to cost of plane 
–  e.g., in a handful of GPUs (!) 
–  drawing a few KiloWatts 

•  However, detailed aerodynamics codes are not 
routinely employed in automated real-time loops 
–  providing accurate initial and boundary conditions is a 

challenge 
–  reduced-order models based on ready observables 

are more practical 



Problems with adaptivity 
•  Difficult to guarantee accuracy 

–  much more mathematics to be done for realistic 
computer models 

•  Difficult to program 
–  complex dynamic data structures 

•  Can’t always help 
–  sometimes resolution really is needed everywhere, 

e.g., in wave propagation problems 
•  May not work well with pipelining and parallel 

techniques 
–  tension between conflicting needs of local focusing of 

computation and global regularity 



Conclusions 
•  Parallel networks of commodity pipelined 

microprocessors offer cheap, fast, powerful 
supercomputing 

•  Algorithm development offers better, more 
efficient ways to use all computers 

•  Riding the waves of architectural advancements 
and creating improved simulation techniques 
opens up new vistas for computational science 
across the spectrum 



Summary 
•  Application – computational aerodynamics 
•  Numerical analysis – discretization of 

conservation laws 
•  Courant stability limit (1928) – speed of sound 
•  Hardware limit– speed of light 
•  Computer architecture – pipelining & parallelism 
•  Moore’s Law (1965) 
•  Amdahl’s Law (1967) 
•  Power of adaptive, optimal algorithms 
•  Bell Prizes (1988 onwards) 
•  Cost-effective future of simulation 
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