
Using Your Blue Waters
Accounts

Introduction to HPC
from the Fall 2016 Team

With thanks to Bill Gropp and
the Spring 2016 Team

2

Logging In

•  Each account has a user name traxxx,
e.g., tra798

•  Each student should use only their
account, and only for the course

•  Passwords cannot be changed
•  Access Blue Waters through a special

gateway (do not use the
h2ologin.ncsa.illinois.edu node
mentioned in the online documentation)

•  E.g.,
 ssh tra798@bwbay.ncsa.illinois.edu

3

Development Environment

• Blue Waters runs a version of
Linux
♦ All “usual” Linux commands available

•  “module” used to select different
software, including compilers

•  Jobs are run by submitting a script
file to a batch system with the
command qsub. qstat shows the
status of the Blue Water job
queue.

4

Debugging

•  Interactive debugging is possible
but somewhat complicated
♦ See

https://bluewaters.ncsa.illinois.edu/
ddt

•  It is better (as much as possible)
to debug on smaller systems (I
use my laptop for most of my MPI
debugging) before running on Blue
Waters.

5

Moving Files to and From
Blue Waters

•  See
♦  https://bluewaters.ncsa.illinois.edu/education-training-

allocation-data-transfer
•  scp (secure copy program) is an easy way to move files

between different systems
♦  For large file transfers (bigger than you’ll need for the

homework), see
♦  https://bluewaters.ncsa.illinois.edu/data-transfer-doc

•  You (probably) can’t use scp to Blue Waters
♦  Due to the way security is set up for these accounts

•  The easiest solution is to log into Blue Waters and use
scp from Blue Waters

•  For groups of files, create a compressed tar file first and
move that.

6

Running Programs on Blue
Waters

•  See the documentation at
https://bluewaters.ncsa.illinois.edu/

•  Particularly the “Documentation/Getting
Started”

•  Note that jobs should not be run on the
login node
♦ Use only for editing, compiling, linking, etc.
♦ Use the batch system for all computational

experiments, even with a single node

7

Other Notes

•  For information on how to control how
nodes are allocated, see
https://bluewaters.ncsa.illinois.edu/
topology-considerations

•  MPI jobs are run with aprun, not
mpiexec
♦ An mpiexec is provided that will submit

batch jobs, run the program with aprun,
and direct the output to stdout/stderr. This
is useful for simple tests. Details on a later
slide

8

Fixing Your Environment

• By default, vim uses a nearly
useless color palate for syntax
highlighting, making it nearly
impossible to read
♦ Add

• syntax off
♦ to the file .vimrc :

• echo “syntax off” >> .vimrc

9

More on Running Programs

• Create a script, run qsub with that
script, and then wait for the job to
finish

• Example follows, but
♦ “Account” for the class is bagx
♦ Use this with the PBS –A command

10

An Example Script File for ps2.c

#!/bin/bash
#PBS -q normal
#PBS –A bagx
#PBS -N ps2
Always request the entire node. ppn is now the
processors per node, which is 32 for xe and 16 for xk
#PBS -l nodes=1:ppn=32:xe
#PBS -l walltime=0:05:00
#PBS -e $PBS_JOBID.err
#PBS -o $PBS_JOBID.out
cd $PBS_O_WORKDIR
See the man page on aprun
aprun -n 1 -N 1 -cc 0 ps2.out –da_refine 4 –log_view

11

Running ps2

•  cp –iR /projects/eot/bagx/ps2 ./
•  cd ps2/mod/
• module load cray-petsc
• module swap PrgEnv-cray PrgEnv-

gnu
• make all
• qsub test.pbs

