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Summary High performance computing boasts a steadily
increasing number of adherents, for excellent reasons, tra-
ditional and innovative. However, the promises for which
scientists and engineers have been drawn to the extreme
of the spectrum are more elusive than the simple extrap-
olation of decades of exponential improvement suggests.
Programming today's systems for high performance is already
problematic for many scientists and the learning curve will
inexorably steepen. Expectations should be brought in line
with the increasing difficulty of pushing the high perform-
ance frontier, and, for once, the modeling, algorithms, and
software advances required to use the emerging hardware
effectively should not be left until the hardware begins to
arrive.  »»»  Zusammenfassung Das Hochleistungs-
rechnen rithmt sich einer — aus klassischen oder ganz neuen,

aber immer aus sehr guten Griinden — stetig wachsenden
Anhéngerschaft. Allerdings sind die VerheiBungen, die Wis-
senschaftler zum oberen Ende des Leistungspektrums gelockt
haben, schwerer fassbar als die einfache Extrapolation des ex-
ponentiellen Wachstums an Rechenleistung, welche wir seit
Jahrzehnten sehen, vorgaukelt. Bereits heute ist es flr viele
Wissenschaftler schwierig, Supercomputer voll auszureizen,
und die Lernkurve wird in Zukunft unerbittlich flacher werden.
Daher mussen die Erwartungen an Hochleistungsrechensys-
teme ins Verhaltnis zum Aufwand gesetzt werden, der notig
ist, um deren Leistung bestmdglich auszunutzen. Hierbei darf
man mit Fortschritten bei Modellierung, Algorithmen und Soft-
ware, die zur effektiven Nutzung neuer Hardware notwendig
sind, nicht bis zur flachendeckenden Verfligbarkeit dieser
Hardware warten.
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Exascale ww»» Schlagworter Hochleistungsrechnen

A capability that offers vast improvements at predictable
intervals justifiably draws attention and market share. As
markets are reshaped, expectations grow and pressure in-
creases to fulfill them. As a gedanken experiment, consider
how the phenomenon of a price drop in a commodity by
a factor of ten every three years could play out. Today,
in 2013, peanut butter commands a price of approxi-
mately one thousand dollars per ton, and at this price
it is a delicacy whose proper use is in select recipes and
confections. However, if we were assured that by 2016, its
price would be a mere one hundred dollars per ton, we
would substitute peanut oil for other oils in a vast number
of recipes where it is not practical today. If we could pre-
dict further a price drop to ten dollars per ton by 2019, we
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would consider how to exploit it as a feedstock in many
other contexts, for instance, to make plastics. A price of
one dollar per ton by 2022 would compel us to convert
furnaces to burn peanut butter or to further engineer it
into liquid fuels. Carrying the analogy one more stage, at
a price of ten cents per ton by 2025, we would use peanut
butter in place of asphalt to pave roads!'

1 The “Miracle” of High Performance
Computing

The cost of computing has been on a curve similar to

this for more than two decades. Today’s smartphones (of

!"The author was inspired for this example by Dean R. Chapman’s
1979 NASA Dryden lecture.
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which IDC estimates 0.6 billion units were sold in 2012)
surpass the processing power (1 Gflop/s) of the world’s
most powerful supercomputer of two decades ago, as
documented in the Top500 list>. Though the Top500 list
documents a specialized benchmark from dense linear
algebra, which is artificial and of limited relevance at
very large scales, it is a surprisingly good proxy for the
Gordon Bell prize, awarded nearly annually since 1988,
which, like the Top500 list, documents an impressive
factor of one thousand in floating point performance on
real scientific applications every decade, for a factor of
more than ten million overall since the prize was first
awarded. A related prize, awarded less frequently by the
same ACM Gordon Bell Prize Committee, tracks price per
performance and shows a reduction of almost a factor of
one million in the cost per (double precision) Gflop/s
of acquiring computers employed on a winning scientific
application over a two decade period from 1989 to 2009,
with the most recent large improvement coming from
the advent of GPGPUs.

As a result of these dramatic successes in processing
and corresponding improvements in data transmission
and storage, fields of endeavor never considered in the
realm of supercomputing decades ago, such as telecom-
munications, consumer products, finance, inventory and
fleet management, entertainment, and so forth, have be-
come highly dependent on cheap processing and flows
of data. “Smart” worlds are aggressively under develop-
ment: smart highways, smart farms, smart oil fields, smart
utility grids, smart medicine, and even smart educational
systems! A characteristic of “smartness” in this sense is
the dynamic and custom delivery of services that used to
be delivered steadily and monolithically. A common goal
is to use a resource optimally, so that engineering margins
can be minimized with guaranteed quality of service at
the lowest cost. Enabling this smartness is the fusion of
high performance simulation with vast amounts of data.
For many users, a greater virtue than petascale processing
may be access to petascale data sets stored in DRAM, on
which relatively modest processing is required.

Not surprisingly, scientists and engineers, who col-
lectively delivered this technology to the marketplace as
a by-product of their own discipline-driven visions, have
begun to rely on the “third paradigm” of simulation and
the “fourth paradigm” of data analytics, alongside the
first two paradigms of theory and experiment, in their
own work. Understandably, given the standards for un-
certainty quantification and reproducibility in scientific
discovery and engineering design, the acceptance of the
third and fourth paradigms relative to the first two has
been slow and cautious. Nevertheless, it is today more
common than not for a publication in an experimentally
dominated field like chemistry to be backed by a simula-
tion, and some fields, such as quantum chromodynamics
or astrophysics, are essentially children of simulation.

? http://www.top500.org

2 The Mandate of High Performance
Computing

The massive edifices of hardware, software, applications,
organizational and educational infrastructure described
in the previous articles of this issue, and the resulting
happy ecosystem are, however, now exposed to a gulf
between expectations and the ability to deliver. It is ir-
responsible to assume that the decadal improvements
of factors of one thousand in general purpose applica-
tions will be sustainable. The purpose of this concluding
discussion is to identify some vulnerabilities of the ecosys-
tem. Properly done, we may avoid a crash of expectations
and guide investment to critical issues.

In [1], following up on the arguments of 315 scientists
and engineers engaged in the drafting of the 2003 report
“A Science-based Case for Large-scale Simulation” [2], we
summarized the major mandates for pushing to extreme
scale simulation for scientific discovery and engineering
design as follows:

1. Better resolve a model’s full, natural range of length
or time scales
2. Accommodate physical effects with greater fidelity
. Allow the model degrees of freedom in all relevant
dimensions
. Better isolate artificial boundary conditions
. Combine multiple complex models
. Solve an inverse problem or perform data assimilation
Perform optimization or control
. Quantify uncertainty
and we illustrated them for the oil industry. To these
objectives, which presume the availability of physical
models, such as conservation principles, we could add
a ninth:
9. Accomplish predictions without physical models,
using statistical models based on large data sets
Indeed, these are compelling reasons for continuing to
push computational technology to its extremes, but it
is disappointing to realize how many factors of one
thousand, and therefore how many decades away from
fulfillment (if we could extrapolate Top500 performance
progress) many of these mandates are. Resolution must
typically be refined in each of many dimensions, e.g.,
in a fairly isotropic problem in partial differential equa-
tions (PDEs). If the computation is explicit, Courant
restrictions on the timestep force refinement in another
dimension. A factor of one thousand spread over four
dimensions in a wave propagation problem allows a fac-
tor of only approximately 5.6 in each dimension. This
is a disappointing dividend for a ten-year wait. If we
simultaneously want to replace constitutive relationships
in the PDE coefficients with, say, first principles molecu-
lar dynamics, we may wait another decade. Wrapping
the PDE inside an optimization loop for, say, forcing
conditions on the boundary compounds the delay to the
length of most individual scientific careers (!), if all is
done in a brute force manner. Whereas optimal algo-
rithms (e.g., multigrid, multipole, or fast transforms,
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with operational complexity scaling linearly or at most
log-linearly in data size) exist for many physics-based
tasks, many scientific data mining techniques are not
yet optimal in the size of the data, inasmuch as they
require pairwise or higher-order operations (e.g., com-
parisons) of data elements with each other, in ways that
are not yet apparently amenable to exploitation of hi-
erarchy. The optimal algorithms listed above have in
common the use of a hierarchy of scales from fine to
coarse or high to low wavenumber, so that data at each
physical range, in turn, enjoy locality of memory. We
conclude from this paragraph that the most important
scientific breakthroughs are not going to come from
miraculous computer engineering alone, but from bet-
ter mathematical formulations or more realistically posed
objectives,

3 The Mirage of High Performance Computing
Even assuming that scientific objectives could be satis-
fied with today’s “brute force” methods by waiting for
hardware advances, extrapolating exponentials is always
unwise. Effects that are ignorable and are therefore almost
forgotten over many e-folding times eventually undo
the assumptions. Moore’s Law, which anticipates an ex-
ponential increase in linear time with constant power
density of digital gate density on CMOS chips, may well
last into another (fifth or even sixth) decade. However,
leakage currents and the resistivity of correspondingly
miniaturized copper vias can no longer be neglected at
smaller dimensions, so packing in more transistors is
moot.

Similarly, core-level parallelism, which has risen to
more than 1.5 million in the Blue Gene/Q “Sequoia”
machine at Lawrence Livermore National Laboratory, has
outpaced the programming model of the Message-Passing
Interface (MPI), in which the international scientific
community has an investment of an estimated billion
dollars of software. Memory buffers and coordination
overheads for that many interacting processes under arbi-
trary communication patterns are too great. The natural
mitigation is to adopt hybrid programming models in
which MPI is used on the outside, at the level of nodes,
while within a node, cores sharing memory use one of
the many possible models for multiple threads. Unfortu-
nately, scientific codes for which machines like Sequoia
are designed are often memory bandwidth-limited in
critical kernels and expanding the number of cores
within a distributed memory element saturates quickly
for enhanced performance. Lack of portability of shared
memory models is another discouragement.

Whether distributed or shared, programming models
must progress beyond the current models, which typ-
ically employ pre-ordered loops and deep sequences of
routines, and are often synchronized at each calling in-
terface. This style of coding, which has many virtues,
unfortunately both over-orders and over-synchronizes
relative to more relaxed dynamic data flow implemen-

tations. Nearly all scalable code today follows the “bulk
synchronous parallel” (BSP) model, observed in [3] to
bridge software and hardware in the sense of provid-
ing a hardware-oblivious target for programmers and
a software-oblivious target for architects. BSP programs
are easy to understand since they express computation
and communication as iteratively executed synchronized
“supersteps”. The BSP model is appropriate for applica-
tions in which high concurrency with good load balance
can be achieved, and it has been refined and extended
to many challenging applications, including those with
time-varying loads and adaptivity. However, currently
contemplated exascale architectures will lack hardware
performance reliability, which means that precision load
balancing is rendered moot by the wide variations in
the rate at which instructions are processed. The lack
of performance reliability comes from the need to oper-
ate the hardware very close to the noise level, and also
very close to the thermal dissipation limit, meaning the
computations may need to be redone or that portions of
the chip may need to be dynamically slowed or powered
off.

Throughout a century or more of numerical analysis,
significantly predating digital computers, the premium
has been on attaining a given level of accuracy while
conserving floating point operations, which was a natural
proxy for minimizing runtime and minimizing the energy
of computation. Semiconductor industry roadmaps now
show, however, that by the end of the decade, the energy
cost of transmitting the data (from deep local memory or
from another processor) will be an order of magnitude
or more greater than the cost of the arithmetic, which
it already exceeds even on current commodity architec-
tures. The cost in time of finding and moving data is
already greater than the cost of the arithmetic. By the
most basic of engineering design principles — optimize
the most expensive operations first — today’s “optimal”
algorithms have been designed with the yesterday’s objec-
tives in mind and should be completely revisited with the
objective of minimizing data motion, even at the cost of
considerable extra arithmetic. The popular mantra “flops
are free” is deceptive because some flops require moving
data, but it is certainly true that counting flops may soon
have little to do with measuring the efficiency of an al-
gorithm.

Another of the many implications of the hardware
stresses at the exascale is that there will be pressure
on today’s default use of high precision in order to
operate far from the stability limit of numerical algo-
rithms in the presence of floating point rounding error.
In order to conserve memory capacity, memory band-
width, and power, algorithms will need to be rewritten
to compute and communicate mainly the “deltas” be-
tween quantities that are updated, rather than the full
quantities, themselves. This requires a major rethinking
and certainly a recoding of numerical algorithms. Nu-
merical analysts are not accustomed to negotiating the



types of tradeoffs that effective use of emerging hard-
ware may require, including tradeoffs of extra storage
versus extra computations, extra communications versus
extra computations, and waiting for delayed communica-
tions versus proceeding speculatively with the possibility
of rollback.

Tomorrow’s high performance hardware is predicted
to fail (unrecoverably) more frequently, reducing the
average runtime between failures relative to today. Coor-
dination libraries like MPI presume that all processes are
up, and failure of one process generally implies restart
from the last checkpoint. In contrast, tomorrow’s algo-
rithms and programming models will have to be able
to execute resiliently past multiple random hardware
failures, either by reconstructing missing data and re-
balancing work, or by bounding the errors due to what
is missing. There are interesting prospects for the latter
in many computations, but algorithms and analyses will
need to be developed by a generation of computational
scientists not being trained with such contingencies in
mind.

To make up for the increasing gap between a high-
level expression of a scientific or engineering task and its
dynamic execution on unreliable, massively distributed
hardware, the software stack will need to add layers.
The additional layers will be required for programmabil-
ity, portability, and performance. More source-to-source
translations will occur between the layers and more au-
totuning will be required within and between layers. The
complexity of this layer decomposition and tuning is not
yet understood nor fully taken into account, if predict-
ing that exascale performance on real applications will
quickly follow the availability of exascale hardware.

Computer scientists have approached the next com-
putational frontier with great trepidation before, only
to find that the radical reinventions thought to be re-
quired to attain it were unnecessary. Thus, for instance,
the Petaflops workshops conducted in 1995-1997 under
the leadership of Thomas Sterling, raised a Hybrid Tech-
nology MultiThreaded (HTMT) candidate along with
a Commodity Off-The-Shelf (COTS) candidate for the
petascale, out of concern that the COTS approach might
fail one or more of the numerous challenges: build-
ability, programmability, affordability, etc. HTMT, itself,
depended upon four high-risk technologies: post-CMOS
superconducting rapid single flux quantum (RSFQ) logic
capable of approaching a THz cycle time, processors-in-
memory (PIM) DRAM storage, a “data vortex” optical
interconnect network that could store data on the fly,
and 1 PetaByte of holographic store. However due to
its powerful elements, it did not require discovering and
coordinating as much concurrency in scientific programs
as did the COTS approach. (See [4;5] for interesting
projections for the first petascale computers predating
their arrival by more than a decade.) Ultimately, the
petascale was attained handily by three separate designs
from IBM alone (let alone a plethora of designs from

other vendors): the Roadrunner based on the SIMD
Cell processor, the BlueGene based on massively par-
allel low-frequency cores, and the Power series based
on a smaller number of high-frequency, but still con-
ventional, cores. While the programming model for
the Roadrunner appeared radical, attached processors
with their own code and their own compilers are now
commodity. Other petascale designs required no ma-
jor departures from the contemporary message-passing
canon. These successes, however, may have been the
last under Pax MPI-BSP. The exascale is fundamentally
harder than the petascale in that there are electrical power
and heat dissipation limits that will not permit simple
multiplication by a factor of one hundred of today’s 10
Petaflop/s technology, even if all programmability and
performance issues can be accommodated along that tra-
jectory.

4 Conclusion
Many “grand challenges” of computational science, in
simulating complex systems, await the increasing power
of high performance computing. It can be argued that
any system that can deterministically and reproducibly
simulate another system must be at least as complex
as the system being simulated. Therefore, the high per-
formance computational environment is, itself, the most
complex system to model. The grand challenge of com-
puter science is making this complex simulation system
sufficiently manageable to use that scientists who are
expert in something else (e. g., quantum chemistry, geo-
physics, electromagnetics) can employ it effectively. The
greatest mirage of HPC may be in the assumption that
we can bridge the gap between machine complexity and
human users. Certainly, this is the challenge that remains
after all of the components in the chain are delivered.
As with a naturally occurring mirage, it will continue
to be difficult to distinguish between wish and reality
until we get closer.
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