Unit 1, Part 2

Introduction to High Performance
Computing

A Blue Waters Online Course
Fall 2016

David Keyes, Instructor

Professor of Applied Mathematics and Computational Science
Director, Extreme Computing Research Center

King Abdullah University of Science and Technology

Parallel Algorithms

David E. Keyes
King Abdullah University of Science and Technology

with acknowledgments to
Thomas Sterling
University of Indiana, Bloomington

Four steps to create a parallel program

Decomposition of computation in tasks

Assignment of tasks to processes

Orchestration of data access, communication & synchronization
Mapping processes to processors

— —_

Partitioning

Q@ —-oool

‘ —
° e T

Sequential Tasks Processes Parallel Processors
computation program

~>035Q—0n n >

50 —~—0O0T 30000 —
S50 =0 ~n0®I3T0-0

 First three involve the algorithm
* The /ast involves the architecture

clo D. E. Culler, UC Berkeley, et al.

Co-design
The one-way flow of the previous diagram is necessary, but usually
insufficient if the goal is high performance
Normally, we must fune the algorithm to the architecture

This requires measuring the performance of the result and making
changes to one or more stages of the algorithm

A performance model should allow fewer iterations around the loop

Partitioning
//7\5
10
5
\ ~
¥

|
(@)
0 o r :
. DI c o
o O " P
m g [
o D) n s n Po —| P
o) OO m t g
s — — e — B — I — _ — >
i O n a
t OO t F P —| Ps
i |
o DO 0
n) n

Sequential Tasks Processes Parallel Processors
computation program

Aside

Occasionally, | will insert a stop sign to suggest that a
student in self-learning mode — or an instructor in class
mode — pause the video playback and brainstorm on
what comes next, before proceeding

Like having a performance model before collecting the
data, anticipating what is coming next will help learn it —
whether the anticipation proves met or not

The video will not stop automatically and these signs can
be ignored for fast review

Probably, | will pause too little... so pause it, yourself!

What might you tune?

Type of decomposition

Number of tasks

Clustering of tasks into processors
Amount of information exchanged
Frequency of exchanges

Aggregation of exchanges

Order of computation and communication

« Recomputation None of these change
: the problem being
« Mapping of tasks to processors t solved, just how to
« Type of solution method solve it
« Type of representation or basis We may also be led to
 Type of formulation (!) ‘ formulate a different
problem that can be

Goal of computation (!!) solved more efficiently!

Designing an HPC code —

athematical Model?

> eoretical Scie
(matyematical mgdels)

Applied Mathematics

\¥/

(basic algorithms)
>

Computhtional Science

(scie

tific godes)

Computer Science
(systems software)

omputational Method?

\/

Co

Pfedictidns

nputdtional

-€

c/o T. Dunning, SciDAC Report, 2000

the diagram that launched SciDAC

High-
performance,
Validated
“Tool’ for
Scientific
Discovery

Modeling hierarchy
Physicall
conceptualization <|':>
Mathematical
model <:>
Finite <:> Discretization

discretization convergence /| code

> optimi-
Solution <;:>

zation
“Code optimization” here refers to numerical algorithmics
Performance optimization is a different specialization

Interpretation)

> validation

Model convergence/)

> verification
\

Algebraic convergence-

A% PHYSICAL WORLD

COMPUTER CODE

HARDWARE EXECUTION

Some important algorithms

 In 2000, Jack Dongarra & Francis Sullivan whimsically
introduced in I[EEE Computational Science and
Engineering a set of the “Top 10" algorithms of the

previous century

— actually, from the 1940s through the 1980s

— some numerical, some non-numerical, and some “mixed

— typically simulation or optimization algorithms, or
algorithms that support these tasks

* In 2008, Xindong Wu & Vipin Kumar systematically
performed a similar selection focusing on data mining,
for Knowledge and Information Systems

— half from the 1990’s and half earlier
— typically statistical and inferential tools

7

More important algorithms

* In 2004, Phil Colella, in a talk entitled Defining Software
Requirements for Scientific Computing, named a set of
seven key algorithms the “Seven Dwarves”

— giant in importance (!)

* In 2006, a large team including David Patterson, John
Shalf, and Kathy Yelick wrote a report entitled Parallel
Computing Research: A View from Berkeley, in which
the original 7 dwarves were complemented by 6 more
from discrete mathematics — 13 in all

* In 2009, a large team led by VIadimir Safanov at St.
Petersburg, published open source implementations of
all 13 dwarves under the Parallel Dwarfs project

— https: / /paralleldwarfs .codeplex.com <4mmCouldbe agood course
project to push one of

these along

What would you put on these
lists?

» 1946 — The Monte Carlo method.

» 1947 — Simplex Method for Linear Programming.

» 1950 — Krylov Subspace lteration Method.

» 1951 — The Decompositional Approach to Matrix Computations.
» 1957 — The Fortran Compiler.

» 1959 — QR Algorithm for Computing Eigenvalues.

» 1962 — Quicksort Algorithms for Sorting.

» 1965 — Fast Fourier Transform.

» 1977 — Integer Relation Detection.

» 1987 — Fast Multipole Method.

e AT WG Ton

» 1951 — k Nearest Neighbor Classification (kNN)

» 1957 — K-means Clustering

» 1961 — Decision Trees

» 1977 — Expectation Maximization

» 1984 — Classification and Regression Trees (CART)
» 1994 — Apriori Algorithm

» 1995 — Support Vector Machines

» 1997 — Naive Bayes

» 1997 — AdaBoost

» 1998 — PageRank

c/o Walt Disney

Rio Yokota's interpretation of the
seven dwarves

HER

‘nﬂﬂﬂﬂﬂ - = : EEEEN
-Ta’St) HEEEEN

Qg © Monte- Fourier AT SERER
o oo o — inear mEEEEm
©70° o 4 Algebra Dense
NBod Structured Unstructured Linear

L o Grids Grids o Algebra

Sleepy ~ Happy

Bashful Sneezy

Heigh Ho...

Dopey

>alable Hierarchical 5

» 1960's — Fast Fourier Transform

» 1970's — Multigrid Methods

» 1980’s — Fast Multipole Methods

» 1990's — Sparse Grid Methods

» 2000's — Hierarchically Low-Rank Matrix Methods

2016 KAUST Workshop PR
on Scalable Hierarchical Algorithms SR
for Extreme Computing (SHAXC'16)

High performance implementations

 All high performance implementations of these
algorithms will exploit parallelism

* A goal of the course will be to classify parallel
approaches and associate them with

— Hardware that can support them
— Algorithms that can benefit from them
— Software that can implement them

« A successful student
— builds categories
— populates them with examples
— connects new material to an expanding reference set

« To formulate parallel programming categories, we look back
50 years to ...

Flynn's taxonomy (1966) of
parallel architectures

Many significant scientific problems require the use of
prodigious amounts of computing time. In order to handle these
problems adequately, the large-scale scientific computer has
been developed. This computer addresses itself to a class of
problems characterized by having a high ratio of computing
requirement to input/output requirements (a partially de facto
situation caused by the unavailability of matching input/output
equipment). The complexity of these processors, coupled with
the advancement of the state of the computing art they
represent has focused attention on scientific computers. Insight
thus gained is frequently a predictor of computer developments
on a more universal basis. This paper [reviews] possible
organizations starting with “concurrent” organizations presently
in operation and examining other theoretical possibilities.

Very High-Speed Computing Systems

MICHAEL J. FLYNN, MEMBER, IEEE

Abstract—Very high-speed compaters may be classified as follows:
1) Single Instruction Stream-Single Data Stream (SISD)
2) Single lastraction Stream-Maltiple Data Stream (SIMD)
3) Multiple Iastroction Data Stream (MISD)
4) Maltiple Instroction Stream-Moltiple Data Stream (MIMD).

“Stream,” as used bere, refers 1o the sequence of data or imstructions a5 seen
by the crachioe during the execution of a program.

systems (CDC 6600 series and, in particular, [BM Model 90 series), siace
maltiple stream organizations wsaally do 8ot require amy more elaborate

composents.
Representative organizations are selected from each class asd the
arrangesscat of the constitucats is shown.

INTRODUCTION

execution, and

di with regard and or systems.
limitations. The comstituents are discawsed i terms of coocwrrest SISD

Masuscript received June 30, 1966; revised August 16, 1966, This work
as performed under the auspices of the U. S. Atomic Energy Commission.
The author is with Northwestern University, Evanston, Ill., and|

Argonne National Laboratory, Argoane, IIl.

1902 PROCEEDINGS

ANY SIGNIFICANT scientific problems require
M the use of prodigious amounts of computing time.

In order to handle these problems :d:quuely the
larg le scientific has been . This
computer addresses itself to a class of problems chamter
ized by having a high ratio of computing requirement to
input/output requirements (a partially de facto situation

OF THE IEEE DECEMBER

c:nusod by the unavailability of matching input/output
The ity of these p co\rpled
with the advancement of the state of the computing art
they represent, has focused attention on scientific com-
puters. Insight thus gained is frequently a predictor of com-
puter developments on a more universal basis. This paper
is an attempt to explore large scientific computing equip-
ment, rev mung possible organizations starting with the
“concurrent” organizations which are prtsen(l) in opera-
tion and then the other th ga
tional possibilitics,

Ihe situation would be equally untenable, since in many
broblems one would consider a large matrix of data a unit.
Fhus we arb selecta :the IBM
§04-709-7090. This organization is then regarded as the
prototype of the class of machines which we label :

1) Single Instruction Stream-Single Data Stream (SISD).
Blhree additional organizational classes are evident.

2) Single Instruction Stream-Multiple Data Stream
(SIMD)
3) Multiple Instruction Stream-Single Data Stream

Thus we arbitrarily select a reference organization: the IBM
704-709-7090. This organization is then regarded as the
prototype of the class of machines which we label:

1) Single Instruction Stream-Single Data Stream (SISD).
Three additional organizational classes are evident.

2) Single Instruction Stream-Multiple Data Stream

PERFORMANCE
(INST PER CYCLE)

(SIMD)
3) Multiple Instruction Stream-Single Data Stream
(MISD)
4) Multiple Instruction Stream—Multiple Data Stream °) 20 %

PECENTAGE OF OCCURREMGE OF CONDITIOMAL BRANCH INSTRUCTIONS

(MIMD).

ORCARIZRTION

The computing process, in its essential form, is the per-
formance of a sequence of instructions on a set of data.

Each instruction performs a combinatorial manipulation
(although, for economy, subsequencing is also involved)
on one or two elements of the data set. If the element were a
single bit and only one such bit could be manipulated at any
unit of time, we would have a variation of the Turing ma-
chine—the strictly serial sequential machine.

The natural extension of this is to introduce a data set
whose elements more closely correspond to a “natural™
data quantum (character, integer, floating point number,
etc.). Since the size of datum has increased, so too has the

nAnmbar af camhbinatarial maninnlatiane that can ha ner.

(MISD)
4) Multiple Instruction Stream-Multiple Data Stream
(MIMD).

Before continuing, we define two additional useful
notions.

Bandwidth is an exp of ti te of . In
particular, ional or bandwidth is the
number of instructions processed per second and storage
bandwidth is the retrieval rate of operand and operation
memory words (words/second).

Latency or latent period is the total time associated with
the p (from ion to of a parti
data unit at a phase in the computing process.

Flynn's analysis (1972) of
architectural effectiveness

The historic view of parallelism [...] is probably best
represented by Amdahl [...] that certain operations [...] must

be done in an absolutely sequential basis.

These

operations include, for example, the ordinary housekeeping

operations in a program.

In order to achieve any

effectiveness at all [...] parallel organizations processing N
streams must have substantially less than 1 / N x 100

percent of absolutely sequential instruction segments. One
can then proceed to show that typically for large N this does
not exist in conventional programs.

A major difficulty with

this analysis lies in the [implication...] that what exists today
in the way of programming procedures and algorithms must

also exist in the future.

Control e
. Communication
Unit
Processing PE PE
Element
Memory Memory Memory

v

N Universal Execution Resources

I Stream
LN N J

Fig.

—n
| Execution Units|
Data Dependent
Branch

7. SIMD branching.

s

IEEE TRANSACTIONS ON COMFUTERS, VoL, G-21, %0, 9, surTexmss 1972

Some Computer Organizations and Their Effectiveness

MICHAEL J. FLYNN, MEMBER, IEEE

Abstroct—A israrchical medsl of computer crgasitations is
developed, based on a tree model using request/service type re-
sources as nodes. Two aspects of the model are distinguished : bogical
and physical.

General paraiel- or multiphe-stream organizations are examined
25 to type and effectiveness—especially regarding intrinsic logical
iffculties.

The overlapped simplex processor (SISD) is lmited by data
Gependencies. Branching has a particularly degenerative effect

The parallel processors [single-imstraction stream-multiple-

data stream (SIMD)] are analyred. In particular, a nesting type
explanation is offered for Minsky's conjecture—the performance of

2 parallel processor increases as Jog Af instead of M (the mumber of ¢

€ata stream processors).

Multlprecessors (MIMD)
based on genersl
indicate that saturation develops w
Socked out (L/E) approaches 1 /x, where x is the number of proces-
peocessors can be waed o avoid
! problems.

cted t0 a satwraticn syndrome

sors. Resources sdaring
several other classic orga

Index Termp—Computer
ed, parallel processors, re

ization, instruction stream, over-
ce hisrarchy.

IxTRODUCT

“macroscopic”

lar user envi
many aspects; some
ollows.

2) We make no assessment of particular instruction
sets. [tis assumed that there existsa (.

set of instruc
time—except
whose effects

3) We will em
efficiency) in t

se limitations, we w

s or gross structu

n we will examine
scem fundamental
use of internal resources (execution

facilities, memory, etc.) of the system

CrassiFicaTion : Forus oF CoMpuTING SYsTEMS
Gross Structures

In order to describe a machine structure from a

macroscopic point of vi

Flvnn’s hardware taxonomy

Elynn's taxonomy (multioroaramming context)

Single instruction stream Multiple instruction streams |Single program Multiple programs

Single data stream SISD MISD
Multiple data streams SIM\D MIN{D MPMD
commonly used
scientific model
SISD Instruction Pool SIMD Instruction Pool MIMD | Instruction Pool MISD | Instruction Pool
_ _ _ — I
E = — .[pul- E—'PU~——|—‘PU'— E
- oW .
= PU a P =
A = PUl & |[—|PU|— L. PU|] a
|| pu|- | [—[PY[= —[PY- ||

Single Program, Multiple Data (SPMD) is a natural generalization of Single Instruction,
Multiple Data (SIMD) when each processing unit executes its own local copy of the
instruction stream. These copies can branch differently depending upon the data.

c/o The Wikipedia

[parallel algorithm paradigms

Paradigm Examples

Embarrassingly Parallel Monte Carlo

Fork-Join OpenMP parallel for-loop

Manager-Worker Genetic Algorithm

Divide-Conquer-Combine Parallel Sort

Halo exchange Stencil-based PDE solvers (FD, FV, FE)
Permutation Matrix-matrix multiplication (Cannon’s algorithm)
Task Dataflow Breadth-first Search

c/o Thomas Sterling

Embarrassingly Parallel

* A problem that requires little or no effort to identify and
launch many concurrent tasks, and in which there is no
internal synchronization or other communication or load
balancing concern, is called “embarrassingly parallel”

— The term dates to 1986, in an article by Cleve Moler (founder of
MATLAB)

— “Pleasingly parallel” is a popular alternative

* The classic such algorithm is Monte Carlo (1946), which
is the first of the “Top 10" algorithms of the last century

— Monte Carlo also has a popular alternative: the Metropolis
Algorithm, named for Nicholas Metropolis who used it in early

computations of the Ising Model of phase change in 1952

Embarrassingly Parallel example:

Monte Carlo

* Monte Carlo is a statistical approach for studying
systems with a large number of degrees of freedom,
such as neutron transport (for which it was first described
by Von Neumann in 1947)

* It is the algorithm of choice for integration in high
dimensions but it can be demonstrated in low, here two

2r

Embarrassingly Parallel example:

Monte Carlo

* Monte Carlo is arbitrarily parallelizable, but agonizingly

slow

— convergence rate is proportional to N2

* increasing work (here the number of samples) from 10 to 1,000 gives only
a reduction of error of about a factor of 10

— ideally, we would like convergence rate like N
* increasing work from 10 to 1,000 would reduce error by a factor of 10,000

» we are accustomed much better rates in the quadrature of continuous
functions

 In high dimensions, when measured in terms of function
evaluations, Monte Carlo can be the method of choice,
because of the curse of dimensionality, but beware of an
indictment attributed to Von Neumann: “Anyone using
Monte Carlo is in a state of sin.”

Monte Carlo advances

Markov Chain Monte Carlo (MCMC) is a form of Monte
Carlo that chooses smartly conditioned random samples
— not statistically independent, but correlated for efficient “mixing”

— includes: Metropolis-Hastings (1970), Gibbs sampling (1984), and
many others that restore some respectability to MC ©

Multi-level Monte Carlo (MLMC) is a form of Monte Carlo
that evaluates its samples on a hierarchy of models,
coarsened from the model for which the solution is sought

— most of the work is done on the coarser models, which are often
exponentially cheaper, while obtaining the accuracy of the finest

— invented by Mike Giles (2008) and very hot presently

Of course, there is also MLMCMC, the methods MCMC and
MLMC being composable

Quantum Monte Carlo (QMC) is an application to quantum
many-body systems — many computer codes

Fork-Join

/ Fork Phase

| |

[[
Time - - - - -
i

Join Phase

Launches parallel threads within an overall serial
context

Exploits concurrency independent tasks that
become available in batches

May incur overhead of creation and termination of
the threads

Presumes that the concurrent tasks require similar
time to completion

Fork-Join example:

OpenMP loop

1 #pragma omp parallel private(p)

2 { \ 4

3 b 2 5; p=5 p=5| - | p=5
4 #pragma omp for Time i = i= s
5 for (i=0; i < 25; i++) -2 2 -
6 alil = b[i] + px(i+3); b) -
; | |
8 } // end omp parallel

« Code expresses 25 independent ops in for-loop

 OpenMP pragma directs the compiler to batch them
concurrently

« Storage of a[] and b[] is shared — visible and writeable to
all threads of execution

* For OpenMP standard (and training) see openmp.org

Aside

* This is not a course in parallel programming

 Acquisition of skill in parallel programming (using
MPI, OpenMP, CUDA, etc.) is encouraged

— short courses are available at many conferences, at
many universities, and online

— rich literature, excellent open source demos

* Programming produces insight and intuition hard
to obtain from other investments of time

« Fortunately, the maturity of parallel computing
today allows many computational scientists to be

productive at a higher level
— e.g., working within an API like PETSc, Trilinos, ...

Manager-Worker

manager
worker worker worker worker

This paradigm is classically known as “master-slave”

Manager assigns individual tasks to workers, receives
the responses and dynamically constructs and assigns
new tasks until work is complete

Unlike Fork-Join, it does not presume that the tasks are
well balanced, and it is not pre-scheduled

Workers do not synchronize or exchange among selves

Manager-Worker example:

Global parallel genetic algorithm

Genetic algorithms are efficient stochastic search
methods based on principles of natural selection and
genetics

They find an optimum by manipulating a population of
candidate solutions against a fitness function

Good candidates are preferentially selected to mate
(combine their traits by crossover) and reproduce

Many variations exist, including mutations outside of the
parents

The population can allow global exchanges or can be
confined to different islands

Manager-Worker example:

Global parallel genetic algorithm

» Simple manager-worker | [e
selection
Worker 1 Worker 2 Worke
e O
functi luati functi luati function evaluati
 Hierarchical model W W) W) W
M M
M M
c/o Eric Cantu-Paz

Divide-Con

ist of numbers {3,

quer-Combine

,7,5} Random choice of pivot: 12

Random choice of pivot: 3

Given a “large” instance of a problem, partition it
into two or more (independent) subproblems

Solve the subproblems (concurrently)
Merge the subsolutions into a solution of the
original

Recur if step 2 is still “large”

Divide-Conquer-Combine example:

Quicksort

Named one of the “Top 10” algorithms of the last century
— See introductory article by Joseph Jaja

Invented in 1962 by Tony Hoare (born 1934, Turing Prize
winner for definition and design of programming languages,
long list of professional honors)

Important not just as an early paradigm for parallel “divide-

and-conquer”’, but also as an example of a randomized

algorithm

— randomized algorithms are extremely hot today, in both discrete and
continuous forms

Long history of complexity analysis for different cases of

algorithm choices and input conditions

Worst case running time is O(N?) for input size N, but with
probability 1-N<, it is O(N log N) — an “optimal” algorithm

Divide-Conquer-Combine example:

Quicksort

Given List of numbers {3, 14,15,12,9,7,5} Random choice of pivot: 12

v

Low list {3,9,7,5} {14,15} High list
Random choice of pivot: 7 Random choice of pivot: 15
{3,5} {9} {14} {}
Random choice of pivot: 3
{} {5}

Concatenated result: {3,5,7,9,12,14,15}

The numbers represent a orderable set of keys in records to be sorted

Divide-Conquer-Combine example:

Parallel sample quicksort

As evenly as possible distribute N keys among P processors (here N=8 and P=2)

Run sequential quicksort on local data

Sample the sorted sublists at every N/P? locations
Sample Set

Divide-Conquer-Combine example:

Parallel sample quicksort

Gather samples to the root (P=0) and run sequential quicksort

Broadcast P-1 pivot values to all processes

Divide-Conquer-Combine example:

Parallel sample quicksort

Perform an all-to-all communication on the P segments, with P, keeping the i
segment and sending the ;" segment to P,

Pivot:9

5
o =R
' 445N /J}

Final result: {3,5,7,9,10,12,14,15}

The final list of keys is distributed, which is probably what is desired if N is large
compared to what a single processor can store in the first place

The rest of the record volume associated with each sorted key can be moved into
place

Divide-Conquer-Combine example:

Quicksort

« After 54 years, quicksort remains the sorting
routine of choice for large N unless there exists
additional detailed information about the input

« Other means of selecting the pivot exist
— Clearly selecting the median is best
— Normally, there is no fast way to find the median
— Fixed position works poorly unless the input is random
— Finding the median of a randomly chosen subset may be
superior to a single random choice
« Complexity can be measured in individual comparison
operations, or can incorporate memory and
communication costs

Halo Exchange

Many computations, especially partial differential
equations, are executed by SPMD programs in which
each process advances at least one subdomain of the
overall PDE domain, and every subdomain is assigned to
at least one process (usually a 1-to-1 mapping)

By their mathematical nature, PDE codes discretize
derivatives, which are approximated with local “stencils”

Partitioning into subdomains requires replication of the
points of a stencil that belong to a neighboring
subdomains, the replicated region called a “halo”

Parallel implementation requires (usually symmetrical)
nearest-neighbor communication

Halo Exchange example: g
2"d-order Laplacian in 2D g

* Halo exchange is
regular and
frequent and is
built into
communication
subroutines, e.g.,
In the standard
Message-Passing
Interface, MPI

B owned cell

. halo exchange cell
. ghost boundary cell
" unused for 5-pt star

MPI
East
to
West

MPI - North to South q., > MPI - South to North

MPI
West

East

c/o Fabian Dournac 8x8 domain in four 4x4 subdomains, with halos and ghosts

Halo Exchange example:

4th-order Laplacian in 2D

* For higher-order

discretizations,
External Halo —— i I H HEHEEEEEEEEEN

stencils and halos

need to be wider EN) FEEEEEEEEEEEEEEEE
o point star EEEEEEEEE N
o ool .

stencil applied
to this block [l O L
|| [.
[] [.
Internal Halo] |
LI} | [.
* Everything in the 9-point star | || |
black square is stencil applied I []]
to an adjacent [0 [] N
owned by one bock ~~ B T R
interior subdomain _. = =

with no boundar

ey g 0 I A
EEEEEEEEEEEEREENEN N

« The magentais a

double-wide halo EEEEEEEEEEEEEEEN

c/o Michael Flynn

Halo Exchange example:

Sparse matrix-vector multiplication

« Stencil evaluation is a special, structured form of a more
general operation, sparse matrix-vector multiplication

 For a matrix of size N x N and vector of size N, matrix-vector
multiplication is given by

N-1
L — Z Aijbj
j=0

where 4, is the (i,j)" element of the matrix and b, is the ;j*
element of the vector

* For a sparse matrix, however, most of the 4, values are
zero, suggesting that memory should be allocated for every
element

— for 2Md-order Laplacian, 4,= 4 and just four off-diagonals are nonzero

Halo Exchange example:

Sparse matrix-vector multiplication

* Sparse matrix 4, can
use compressed
sparse row (CSR)
format

 Then the matrix, the
input vector b, and
the output vector x
can all be partitioned
by rows with a block
of rows assigned to
each processor

» Information from
vector b is then
potentially nonlocal
to the processors
computing a local
pieces of x

dgo
0

0

Sparse Matrix

an O
a; 0
dy; 9y

0 0

0
dy3

0

o

Process 0

Process 1

Row index

Compressed Sparse Row

0

do1

1

2

Halo Exchange example:

Sparse matrix-vector multiplication

halo exchange terms

nq
Tr; = Z Az'jbj = Z Az'jbj -+ Z A,,;jbj
7=0 local nonlocal

Generate local rows of
matrix A and vector b

v

Broadcast matrix sparsity
pattern

Process O

Halo

Request "bi needed
by local rows in Eqn.

Exchange 4,

Process 1

For each local row i,
compute x; from Eqn

!

Finished

Permutation

Permutation is a class of data-parallel SPMD algorithms,
In which the same local program is simultaneously
applied to different data in a series of stages

Between each stage is an all-to-all permutation of the
data

The Fast Fourier Transform is a famous example,
considered later

Continuing upon matrix-vector multiplication, we consider
matrix-matrix multiplication, C =4 x B

Cannon’s algorithm (1999) is a special form of dense
matrix-matrix multiplication in which two N x N matrices
are multiplied by a v P x v/ P array of processors, each
of which owns a N/v/P x N/vP blockof 4, B,and C

Permutation example:

Dense matrix-matrix multiplication

« Matrix-matrix multiplication is an O(/N?) operation on
O(N?) data N_1
Cij =), AixBy;
k=0

* lIts high arithmetic intensity (ratio of flops to bytes) allows
it to “cover” data motion well

C00 C01 COZ CO3 AOO AOl AOZ A03 BOO BOl BOZ BO3
ClO C11 C12 C13 A10 A11 A12 A13 B10 B11 BlZ Bl3
CZO C21 CZZ C23 AZO A21 AZZ A23 BZO BZl BZZ BZ3

Permutation example:
Dense matrix-matrix multiplication

« Each block of the product on each processor is the result
of /P blocks of each of the factors

Ci1= AgoBoy + Aq1Byy + ApyByy + Ay3By
 All but one of these pairs are initially nonlocal

Permutation example:

Dense matrix- matrlx mult|pllcat|on

12
* From the initial state shown [° .)])
00 01 02 03
A00 A01 AOZ A03
BOO B01 BOZ B03
1 5 9 13
Cio Cia Ciz Cis
Ao A1 A1z Az
Bio B1y Bis Bis
2 6 10 14
CZO C21 CZZ C23
AZO AZl AZZ A23
BZO B21 B22 B23
3 7 11 15
C3o Cs Csz Ci3
Aso Az Az, Ass
B30 B31 B32 833

« Cannon’s algorithm is

row i of matrix 4 is circularly shifted by i blocks left
col j of matrix B is circularly shifted by ;j blocks up
Fork=0to v/P-1:
P, multiplies its two entries and accumulates
each row of 4 is circularly shifted 1 element left
each col of B is circularly shifted 1 element up

Permutation example:

Dense matrix-matrix multiplication

row i of matrix A4 is circularly col j of matrix B is circularly
shifted by i blocks left shifted by j blocks up

Cannon’s Algorithm: Setup Cannon’s Algorithm: Setup

Cis €y Cis (o Coo Cor Co Cos
Ass Ast Bgs Ags Ao Ao An, Aoz
Boo By By Bos Boo Bor Boa Bos
1 5 9 13 L . . 15
Cio Cia Ci, Ci3 A1°
Ao - Ay A A Bm 8
BIO Bll BIZ Bl3 10 1
2 G 10 14 2 6 10 14
Cy Cu Cy Cy Coo G
b E—— A A oo A
B,o B,, B,, B,s B2 B B
3 7 11 15 3 7 11 15
Cs G Gy € Co Cy Cy,
As As; Az A3y As,
B3 B3, B, Bis B3 B3y B By

Permutation example:

Dense matrix-matrix multiplication

Layout after initialization

0 4 8 12
Coo Cox Coz Cos
Ago Ao Ao Aoz
Boo By B2 B33
1 5 9 13
Cio Ci Cia Ci3
An A1 A Ao
Bio By B3, Bos
2 6 10 14
Co Ca Ca Cys
Ay Az A Axn
B2o B3, Boz Bis
3 7 11 15
Cso Ca Cs, Css
Ass A Az Az
Bso Bos B> Bys

Permutation example:
Dense matrix-matrix multiplication
Accumulate® and shift Cz'j += Az’,[i+j—|—k:B[i+j—|—k],j

0

*The bracket [i+j+k] is interpreted in the sense of modulus VP (4 in this example)

Permutation example:

Dense matrix-matrix multiplication

K=0 K
] "] 0 4 8 12 0 4 8 12
 The distributio | | - -~ | I L
I rl u I n Ago Aoy Ay, Aoz Aoy A Aoy Aoo
ft h h . By By, B,, Bi, Byo B,y B3, Bos
p 1 5 9 13 1 5 9 13
1 Clo cll CIZ c13 Clo Cll Clz cl3
epicted here
Byo By, B3, Bos By B3, Boz By
L] L] L] L]
 ltis readily verified r s = i z 6 o g
CZO CZ] CZZ CZS CZO CZI sz CZ3
Az Az Az Axn Az Ay Axn A
that the correct
I t' 3 7 11 15 3 7 11 15
dccumuiations Co Cu C, s Co C ¢ ¢,
A33 A30 A31 ASZ AJO A31 AZZ A33
have occurred -
K=2 K=3
0 4 8 12 0 4 8 12
CDO COI COZ c03 COO col COZ c03
AOZ A03 AOO AO) AO3 AOO Aol AOZ
BZO le BOZ 813 830 BU] Blz 823
1 5) 9 13 1 =) 9 13
clo Cll clz C13 ch Cll ch c13
A13 Alo All Alz AIO All Alz Al3
B3o By, By, By Boo By By, B3,
2 6 10 14 2 6 10 14
Cyo Cn Ca Cos Cyo Cy Cy Ca3
Azo Au AZZ A23 Az: Azz Azs AZD
BUO Bll BZZ 833 810 821 832 803
3 7 1 15 3 7 11 15
Cso Gy Cs; Gy Cyp Cyy Cs, Cys
Ay A3, Ass Az A;; Asy Ay Asy
Bio By, B;, Bos B,o B;, By, B,s

Permutation example:

Dense matrix-matrix multiplication

Flow chart and pseudocode

(") Cz'j += Az‘,[z’+j+k]B[i+j+k]>j

Initialize local matrix A and
B sub-block

v

I

Permute sub-blocks so
that A, i4) and By, are
local to C;

Accumulate partial sum
from Eqn. (*) to o

v

k++

v

l_//_

I

Shift A sub-blocks to the
left and B sub-blocks up

to fulfill condition of Eqn
*

Y

Finished

Task Dataflow

* While any parallel algorithm can be expressed as a
directed graph where the nodes are tasks and the
edges are data dependencies, many algorithms that
explore graphs are themselves naturally expressed
as task dataflow to maximize concurrency

* A goal is to maximize the number of tasks that can
be executed concurrently (breadth) and to minimize
the critical path of dependences (depth)

Task Dataflow example:

Breadth-first search

Breadth-first search is a key component of
numerous larger programs and is tested in the
Graphd00 benchmark

A particular vertex is named as root

Each adjacent vertex to the root is then traversed
first

When no more immediate root neighbors exist,
previously labeled neighbors traverse their
neighbors, thereby establishing the level (or
distance) of every vertex from the root

It should be compared to a depth-first search, which
explores as far as possible before backtracking

Task Dataflow example:

Breadth-first search

Vertex labeling from Vertex labeling from
a breadth-first search a depth-first search

c/o Wikipedia

Task Dataflow example:
Breadth-first search

« Example for breadth-first search showing final level O,
level 1, and level 2

e Seven edges to traverse, on two of which the vertex
has been previously visited, in sequential mode

Starting atroot8:8,4,5,1,7,9

Task Dataflow example:

Breadth-first search

* Vertices are partitioned by process each with its own
edge list, including the process number of the adjacent
vertex

Task Dataflow example:

Breadth-first search

* TJo each vertex is associated a parent vertex label and
a binary flag indicating if the vertex has been visited

 Parallel BFS is initialized

Process O

Process 1

Task Dataflow example:

Breadth-first search

« At the first stage, a level 1 vertex is found on process 1,
which then begins to search concurrently

" Process 0

Process 1

Task Dataflow example:

Breadth-first search

« Two stages are completed in the time of five edge
traversals rather than seven for sequential

Process O

Process 1

Summary

Four steps in creating a parallel program

Co-design of solution algorithm and problem
formulation with architecture, to tune for
performance

Top 10 algorithms for simulation

Top 10 algorithms for data mining

7 floating point “dwarves” and 6 discrete “dwarves’
5 optimal scalable, hierarchical algorithms

Flynn’s classification for programming paradigms
supported in the hardware

Summary

Embarrassing Parallelism
— Monte Carlo

Fork-Join
— OpenMP “for” loop

Manager-Worker

— Global Parallel Genetic Algorithm
Divide-Conquer-Combine

— Quicksort

Summary

* Halo Exchange

— Stencil Evaluation / Sparse Matrix-Vector
Multiplication

* Permutation
— Dense Matrix-Matrix Multiplication

 Task Dataflow
— Breadth-first Search

Principal slide credits

Thomas Sterling (U Indiana)
Matthew Anderson (U Indiana)
Maciej Brodowicz (U Indiana)

plus individual slides as marked

