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Four steps to create a parallel program 
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•  Decomposition of computation in tasks 
•  Assignment of tasks to processes 
•  Orchestration of data access, communication & synchronization 
•  Mapping processes to processors 

c/o D. E. Culler, UC Berkeley, et al.  

•  First three involve the algorithm 
•  The last involves the architecture 



Co-design 
•  The one-way flow of the previous diagram is necessary, but usually 

insufficient if the goal is high performance 
•  Normally, we must tune the algorithm to the architecture 
•  This requires measuring the performance of the result and making 

changes to one or more stages of the algorithm 
•  A performance model should allow fewer iterations around the loop 
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Aside 
•  Occasionally, I will insert a stop sign to suggest that a 

student in self-learning mode – or an instructor in class 
mode – pause the video playback and brainstorm on 
what comes next, before proceeding 

 
•  Like having a performance model before collecting the 

data, anticipating what is coming next will help learn it – 
whether the anticipation proves met or not 

•  The video will not stop automatically and these signs can 
be ignored for fast review 

•  Probably, I will pause too little… so pause it, yourself! 



What might you tune? 
•  Type of decomposition 
•  Number of tasks 
•  Clustering of tasks into processors 
•  Amount of information exchanged 
•  Frequency of exchanges 
•  Aggregation of exchanges 
•  Order of computation and communication 
•  Recomputation 
•  Mapping of tasks to processors 
•  Type of solution method 
•  Type of representation or basis 
•  Type of formulation (!) 
•  Goal of computation (!!) 

None of these change 
the problem being 
solved, just how to 
solve it 

We may also be led to 
formulate a different 
problem that can be 
solved more efficiently! 



V&V 
loop 

Performance 
loop 

Designing	  an	  HPC	  code	  –	  
the	  diagram	  that	  launched	  SciDAC	  

c/o T. Dunning, SciDAC Report, 2000 



Modeling hierarchy 
•  Physical 

conceptualization 

•  Mathematical 
model 

•  Finite 
discretization 

•  Solution 

•  Interpretation 

•  Model convergence 

•  Discretization 
convergence 

•  Algebraic convergence 

validation 

verification 

code 
optimi-
zation 

“Code optimization” here refers to numerical algorithmics 
Performance optimization is a different specialization 



PHYSICAL WORLD 

MATHEMATICAL MODEL 

COMPUTATIONAL MODEL 

SOLUTION ALGORITHM 

COMPUTER CODE 

HARDWARE EXECUTION 



Some important algorithms 
•  In 2000, Jack Dongarra & Francis Sullivan whimsically 

introduced in IEEE Computational Science and 
Engineering a set of the “Top 10” algorithms of the 
previous century  
–  actually, from the 1940s through the 1980s 
–  some numerical, some non-numerical, and some “mixed” 
–  typically simulation or optimization algorithms, or 

algorithms that support these tasks 
•  In 2008, Xindong Wu & Vipin Kumar systematically 

performed a similar selection focusing on data mining, 
for Knowledge and Information Systems 
–  half from the 1990’s and half earlier 
–  typically statistical and inferential tools 



More important algorithms 
•  In 2004, Phil Colella, in a talk entitled Defining Software 

Requirements for Scientific Computing, named a set of 
seven key algorithms the “Seven Dwarves” 
–  giant in importance (!) 

•  In 2006, a large team including David Patterson, John 
Shalf, and Kathy Yelick wrote a report entitled Parallel 
Computing Research: A View from Berkeley, in which 
the original 7 dwarves were complemented by 6 more 
from discrete mathematics – 13 in all 

•  In 2009, a large team led by Vladimir Safanov at St. 
Petersburg, published open source implementations of 
all 13 dwarves under the Parallel Dwarfs project 
–  https://paralleldwarfs.codeplex.com Could be a good course 

project to push one of 
these along 



What would you put on these 
lists? 



.



Ø  1951	  –	  k	  Nearest	  Neighbor	  Classification	  (kNN)	  
Ø  1957	  –	  K-‐means	  Clustering	  
Ø  1961	  –	  Decision	  Trees	  
Ø  1977	  –	  Expectation	  Maximization	  
Ø  1984	  –	  Classification	  and	  Regression	  Trees	  (CART)	  
Ø  1994	  –	  Apriori	  Algorithm	  
Ø  1995	  –	  Support	  Vector	  Machines	  
Ø  1997	  –	  Naïve	  Bayes	  
Ø  1997	  –	  AdaBoost	  
Ø  1998	  –	  PageRank	  



Rio Yokota’s interpretation of the 
seven dwarves 

Grumpy Sleepy Happy 

Doc 
Bashful 

Dopey 
Sneezy 

c/o Walt Disney 



Ø 	  1960’s	  –	  Fast	  Fourier	  Transform	  
Ø 	  1970’s	  –	  Multigrid	  Methods	  
Ø 	  1980’s	  –	  Fast	  Multipole	  Methods	  	  
Ø 	  1990’s	  –	  Sparse	  Grid	  Methods	  
Ø 	  2000’s	  –	  Hierarchically	  Low-‐Rank	  Matrix	  Methods	  
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High performance implementations 
•  All high performance implementations of these 

algorithms will exploit parallelism 
•  A goal of the course will be to classify parallel 

approaches and associate them with 
–  Hardware that can support them 
–  Algorithms that can benefit from them 
–  Software that can implement them 

•  A successful student  
–  builds categories 
–  populates them with examples 
–  connects new material to an expanding reference set 

•  To formulate parallel programming categories, we look back 
50 years to … 



Flynn’s taxonomy (1966) of  
parallel architectures 

Many significant scientific problems require the use of 
prodigious amounts of computing time. In order to handle these 
problems adequately, the large-scale scientific computer has 
been developed.  This computer addresses itself to a class of 
problems characterized by having a high ratio of computing 
requirement to input/output requirements (a partially de facto 
situation caused by the unavailability of matching input/output 
equipment).  The complexity of these processors, coupled with 
the advancement of the state of the computing art they 
represent has focused attention on scientific computers.  Insight 
thus gained is frequently a predictor of computer developments 
on a more universal basis. This paper [reviews] possible 
organizations starting with “concurrent” organizations presently 
in operation and examining other theoretical possibilities. 



Flynn’s analysis (1972) of  
architectural effectiveness 

The historic view of parallelism […] is probably best 
represented by Amdahl […] that certain operations […] must 
be done in an absolutely sequential basis.  These 
operations include, for example, the ordinary housekeeping 
operations in a program.  In order to achieve any 
effectiveness at all […] parallel organizations processing N 
streams must have substantially less than 1 / N x 100 
percent of absolutely sequential instruction segments.  One 
can then proceed to show that typically for large N this does 
not exist in conventional programs.  A major difficulty with 
this analysis lies in the [implication…] that what exists today 
in the way of programming procedures and algorithms must 
also exist in the future.   



Flynn’s hardware taxonomy 

commonly used 
scientific model 

Single Program, Multiple Data (SPMD) is a natural generalization of Single Instruction, 
Multiple Data (SIMD) when each processing unit executes its own local copy of the 
instruction stream.  These copies can branch differently depending upon the data. 

c/o The Wikipedia 



7 parallel algorithm paradigms 

Paradigm Examples 
Embarrassingly Parallel Monte Carlo 
Fork-Join OpenMP parallel for-loop 
Manager-Worker Genetic Algorithm 
Divide-Conquer-Combine Parallel Sort 
Halo exchange Stencil-based PDE solvers (FD, FV, FE) 
Permutation Matrix-matrix multiplication (Cannon’s algorithm) 
Task Dataflow Breadth-first Search 

c/o Thomas Sterling 



Embarrassingly Parallel 
•  A problem that requires little or no effort to identify and 

launch many concurrent tasks, and in which there is no 
internal synchronization or other communication or load 
balancing concern, is called “embarrassingly parallel” 
–  The term dates to 1986, in an article by Cleve Moler (founder of 

MATLAB) 
–  “Pleasingly parallel” is a popular alternative 

•  The classic such algorithm is Monte Carlo (1946), which 
is the first of the “Top 10” algorithms of the last century 
–  Monte Carlo also has a popular alternative: the Metropolis 

Algorithm, named for Nicholas Metropolis who used it in early 
computations of the Ising Model of phase change in 1952 



•  Monte Carlo is a statistical approach for studying 
systems with a large number of degrees of freedom, 
such as neutron transport (for which it was first described 
by Von Neumann in 1947) 

•  It is the algorithm of choice for integration in high 
dimensions but it can be demonstrated in low, here two  

Embarrassingly Parallel example: 

Monte Carlo 



•  Monte Carlo is arbitrarily parallelizable, but agonizingly 
slow 
–  convergence rate is proportional to N-1/2 

•  increasing work (here the number of samples) from 10 to 1,000 gives only 
a reduction of error of about a factor of 10 

–  ideally, we would like convergence rate like N-2 

•  increasing work from 10 to 1,000 would reduce error by a factor of 10,000 
•  we are accustomed much better rates in the quadrature of continuous 

functions 

•  In high dimensions, when measured in terms of function 
evaluations, Monte Carlo can be the method of choice, 
because of the curse of dimensionality, but beware of an 
indictment attributed to Von Neumann: “Anyone using 
Monte Carlo is in a state of sin.”  

Embarrassingly Parallel example: 

Monte Carlo 



•  Markov Chain Monte Carlo (MCMC) is a form of Monte 
Carlo that chooses smartly conditioned random samples 
–  not statistically independent, but correlated for efficient “mixing” 
–  includes: Metropolis-Hastings (1970), Gibbs sampling (1984), and 

many others that restore some respectability to MC J 

•  Multi-level Monte Carlo (MLMC) is a form of Monte Carlo 
that evaluates its samples on a hierarchy of models, 
coarsened from the model for which the solution is sought 
–  most of the work is done on the coarser models, which are often 

exponentially cheaper, while obtaining the accuracy of the finest 
–  invented by Mike Giles (2008) and very hot presently 

•  Of course, there is also MLMCMC, the methods MCMC and 
MLMC being composable 

•  Quantum Monte Carlo (QMC) is an application to quantum 
many-body systems – many computer codes 

Monte Carlo advances 



Fork-Join 

•  Launches parallel threads within an overall serial 
context 

•  Exploits concurrency independent tasks that 
become available in batches 

•  May incur overhead of creation and termination of 
the threads 

•  Presumes that the concurrent tasks require similar 
time to completion 



Fork-Join example: 

OpenMP loop 

•  Code expresses 25 independent ops in for-loop 
•  OpenMP pragma directs the compiler to batch them 

concurrently 
•  Storage of a[ ] and b[ ] is shared – visible and writeable to 

all threads of execution 
•  For OpenMP standard (and training) see openmp.org



Aside 
•  This is not a course in parallel programming 
•  Acquisition of skill in parallel programming (using 

MPI, OpenMP, CUDA, etc.) is encouraged 
–  short courses are available at many conferences, at 

many universities, and online 
–  rich literature, excellent open source demos 

•  Programming produces insight and intuition hard 
to obtain from other investments of time 

•  Fortunately, the maturity of parallel computing 
today allows many computational scientists to be 
productive at a higher level 
–  e.g., working within an API like PETSc, Trilinos, … 



Manager-Worker 
manager 

worker worker worker worker 

•  This paradigm is classically known as “master-slave” 
•  Manager assigns individual tasks to workers, receives 

the responses and dynamically constructs and assigns 
new tasks until work is complete  

•  Unlike Fork-Join, it does not presume that the tasks are 
well balanced, and it is not pre-scheduled 

•  Workers do not synchronize or exchange among selves  



Manager-Worker example: 

Global parallel genetic algorithm 
•  Genetic algorithms are efficient stochastic search 

methods based on principles of natural selection and 
genetics 

•  They find an optimum by manipulating a population of 
candidate solutions against a fitness function 

•  Good candidates are preferentially selected to mate 
(combine their traits by crossover) and reproduce 

•  Many variations exist, including mutations outside of the 
parents 

•  The population can allow global exchanges or can be 
confined to different islands 



Manager-Worker example: 

Global parallel genetic algorithm 
•  Simple manager-worker 

 
•  Hierarchical model 

M M 

M M 

w w w w 

Manager 

Worker 1 Worker 2 Worker n 

c/o Eric Cantu-Paz 



Divide-Conquer-Combine 

1.  Given a “large” instance of a problem, partition it 
into two or more (independent) subproblems 

2.  Solve the subproblems (concurrently) 
3.  Merge the subsolutions into a solution of the 

original 
                    Recur if step 2 is still “large” 



Divide-Conquer-Combine example: 

Quicksort 
•  Named one of the “Top 10” algorithms of the last century 

–  See introductory article by Joseph Jaja 

•  Invented in 1962 by Tony Hoare (born 1934, Turing Prize 
winner for definition and design of programming languages, 
long list of professional honors) 

•  Important not just as an early paradigm for parallel “divide-
and-conquer”, but also as an example of a randomized 
algorithm 
–  randomized algorithms are extremely hot today, in both discrete and 

continuous forms 

•  Long history of complexity analysis for different cases of 
algorithm choices and input conditions 

•  Worst case running time is O(N2) for input size N, but with 
probability 1-N-c, it is O(N log N) – an “optimal” algorithm 



Divide-Conquer-Combine example: 

Quicksort 

The numbers represent a orderable set of keys in records to be sorted 



Divide-Conquer-Combine example: 

Parallel sample quicksort 
As evenly as possible distribute N keys among P processors (here N=8 and P=2)    

Run sequential quicksort on local data 

Sample the sorted sublists at every N/P2 locations 



Divide-Conquer-Combine example: 

Parallel sample quicksort 
Gather samples to the root (P=0) and run sequential quicksort 

Broadcast P-1 pivot values to all processes 

Divide local sorted segments on each process into P segments based on pivots 



Divide-Conquer-Combine example: 

Parallel sample quicksort 
Perform an all-to-all communication on the P segments, with Pi keeping the ith 
segment and sending the jth segment to Pj 

Merge incoming (already sorted) sub-segments into local lists 

The final list of keys is distributed, which is probably what is desired if N is large 
compared to what a single processor can store in the first place 

The rest of the record volume associated with each sorted key can be moved into 
place  



Divide-Conquer-Combine example: 

Quicksort 
•  After 54 years, quicksort remains the sorting 

routine of choice for large N unless there exists 
additional detailed information about the input 

•  Other means of selecting the pivot exist 
–  Clearly selecting the median is best 
–  Normally, there is no fast way to find the median 
–  Fixed position works poorly unless the input is random 
–  Finding the median of a randomly chosen subset may be 

superior to a single random choice 

•  Complexity can be measured in individual comparison 
operations, or can incorporate memory and 
communication costs 



Halo Exchange 
•  Many computations, especially partial differential 

equations, are executed by SPMD programs in which 
each process advances at least one subdomain of the 
overall PDE domain, and every subdomain is assigned to 
at least one process (usually a 1-to-1 mapping) 

•  By their mathematical nature, PDE codes discretize 
derivatives, which are approximated with local “stencils” 

•  Partitioning into subdomains requires replication of the 
points of a stencil that belong to a neighboring 
subdomains, the replicated region called a “halo” 

•  Parallel implementation requires (usually symmetrical) 
nearest-neighbor communication 



Halo Exchange example: 

2nd-order Laplacian in 2D 
•  Halo exchange is 

regular and 
frequent and is 
built into 
communication 
subroutines, e.g., 
in the standard 
Message-Passing 
Interface, MPI 

c/o Fabian Dournac 

owned cell 

halo exchange cell 

ghost boundary cell 

unused for 5-pt star 
8x8 domain in four 4x4 subdomains, with halos and ghosts 
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Halo Exchange example: 

4th-order Laplacian in 2D 

c/o Michael Flynn 

9 

9 

•  For higher-order 
discretizations, 
stencils and halos 
need to be wider 

 
 

•  Everything in the 
black square is 
owned by one 
interior subdomain 
(with no boundary 
points) 

•  The magenta is a 
double-wide halo 
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Halo Exchange example: 

Sparse matrix-vector multiplication 
•  Stencil evaluation is a special, structured form of a more 

general operation, sparse matrix-vector multiplication 
•  For a matrix of size N x N and vector of size N, matrix-vector 

multiplication is given by  
 

    where Aij is the (i,j)th element of the matrix and bj is the jth 
    element of the vector 
•  For a sparse matrix, however, most of the Aij values are 

zero, suggesting that memory should be allocated for every 
element  
–  for 2nd-order Laplacian, Aii = 4 and just four off-diagonals are nonzero 



Halo Exchange example: 

Sparse matrix-vector multiplication 
•  Sparse matrix Aij can 

use compressed 
sparse row (CSR) 
format 

•  Then the matrix, the 
input vector b, and 
the output vector x 
can all be partitioned 
by rows with a block 
of rows assigned to 
each processor 

•  Information from 
vector b is then 
potentially nonlocal 
to the processors 
computing a local 
pieces of x 



Halo Exchange example: 

Sparse matrix-vector multiplication 
halo exchange terms 



Permutation 
•  Permutation is a class of data-parallel SPMD algorithms, 

in which the same local program is simultaneously 
applied to different data in a series of stages 

•  Between each stage is an all-to-all permutation of the 
data 

•  The Fast Fourier Transform is a famous example, 
considered later 

•  Continuing upon matrix-vector multiplication, we consider 
matrix-matrix multiplication, C = A x B 

•  Cannon’s algorithm (1999) is a special form of dense 
matrix-matrix multiplication in which two N x N matrices 
are multiplied by a                    array of processors, each 
of which owns a                             block of A, B , and C 



Permutation example: 

Dense matrix-matrix multiplication 
•  Matrix-matrix multiplication is an O(N3) operation on 

O(N2) data 

•  Its high arithmetic intensity (ratio of flops to bytes) allows 
it to “cover” data motion well 



•  Each block of the product on each processor is the result 
of          blocks of each of the factors 

•  All but one of these pairs are initially nonlocal 

Permutation example: 

Dense matrix-matrix multiplication 



Permutation example: 

Dense matrix-matrix multiplication 
•  From the initial state shown 

•  Cannon’s algorithm is 
row i of matrix A is circularly shifted by i blocks left 
col j of matrix B is circularly shifted by j blocks up 
For k = 0 to       -1: 
       Pij multiplies its two entries and accumulates 
       each row of A is circularly shifted 1 element left 
       each col of B is circularly shifted 1 element up 



Permutation example: 

Dense matrix-matrix multiplication 
row i of matrix A is circularly 
shifted by i blocks left 

col j of matrix B is circularly 
shifted by j blocks up 



Permutation example: 

Dense matrix-matrix multiplication 
Layout after initialization 



Permutation example: 

Dense matrix-matrix multiplication 
Accumulate* and shift 

*The bracket [i+j+k] is interpreted in the sense of modulus        (4 in this example) 



Permutation example: 

Dense matrix-matrix multiplication 
•  The distribution 

after each phase is 
depicted here 

•  It is readily verified 
that the correct 
accumulations 
have occurred 



Permutation example: 

Dense matrix-matrix multiplication 
Flow chart and pseudocode 

(*) 

(*) 

(*) 



Task Dataflow 
•  While any parallel algorithm can be expressed as a 

directed graph where the nodes are tasks and the 
edges are data dependencies, many algorithms that 
explore graphs are themselves naturally expressed 
as task dataflow to maximize concurrency 

•  A goal is to maximize the number of tasks that can 
be executed concurrently (breadth) and to minimize 
the critical path of dependences (depth) 



Task Dataflow example: 

Breadth-first search 
•  Breadth-first search is a key component of 

numerous larger programs and is tested in the 
Graph500 benchmark  

•  A particular vertex is named as root  
•  Each adjacent vertex to the root is then traversed 

first 
•  When no more immediate root neighbors exist, 

previously labeled neighbors traverse their 
neighbors, thereby establishing the level (or 
distance) of every vertex from the root 

•  It should be compared to a depth-first search, which 
explores as far as possible before backtracking 



Task Dataflow example: 

Breadth-first search 

c/o Wikipedia 

Vertex labeling from 
a breadth-first search 

Vertex labeling from 
a depth-first search 



Task Dataflow example: 

Breadth-first search 
•  Example for breadth-first search showing final level 0, 

level 1, and level 2 
•  Seven edges to traverse, on two of which the vertex 

has been previously visited, in sequential mode 



Task Dataflow example: 

Breadth-first search 
•  Vertices are partitioned by process each with its own 

edge list, including the process number of the adjacent 
vertex 



Task Dataflow example: 

Breadth-first search 
•  To each vertex is associated a parent vertex label and 

a binary flag indicating if the vertex has been visited 
•  Parallel BFS is initialized 



Task Dataflow example: 

Breadth-first search 
•  At the first stage, a level 1 vertex is found on process 1, 

which then begins to search concurrently 



Task Dataflow example: 

Breadth-first search 
•  Two stages are completed in the time of five edge 

traversals rather than seven for sequential 



Summary 
•  Four steps in creating a parallel program 
•  Co-design of solution algorithm and problem 

formulation with architecture, to tune for 
performance 

•  Top 10 algorithms for simulation 
•  Top 10 algorithms for data mining 
•  7 floating point “dwarves” and 6 discrete “dwarves” 
•  5 optimal scalable, hierarchical algorithms 
•  Flynn’s classification for programming paradigms 

supported in the hardware 



Summary 
•  Embarrassing Parallelism 

– Monte Carlo 
•  Fork-Join 

– OpenMP “for” loop 
•  Manager-Worker 

– Global Parallel Genetic Algorithm 
•  Divide-Conquer-Combine 

– Quicksort 



Summary 
•  Halo Exchange 

– Stencil Evaluation / Sparse Matrix-Vector 
Multiplication 

•  Permutation 
– Dense Matrix-Matrix Multiplication 

•  Task Dataflow 
– Breadth-first Search 



Principal slide credits 
•  Thomas Sterling (U Indiana) 
•  Matthew Anderson (U Indiana) 
•  Maciej Brodowicz (U Indiana)  
•  plus individual slides as marked 


