
Introduction to High Performance
Computing

A Blue Waters Online Course

Fall 2016

David Keyes, Instructor

Professor of Applied Mathematics and Computational Science
Director, Extreme Computing Research Center

King Abdullah University of Science and Technology

Unit 1, Part 2

Parallel Algorithms

David E. Keyes
King Abdullah University of Science and Technology

with acknowledgments to

Thomas Sterling
University of Indiana, Bloomington

Four steps to create a parallel program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

•  Decomposition of computation in tasks
•  Assignment of tasks to processes
•  Orchestration of data access, communication & synchronization
•  Mapping processes to processors

c/o D. E. Culler, UC Berkeley, et al.

•  First three involve the algorithm
•  The last involves the architecture

Co-design
•  The one-way flow of the previous diagram is necessary, but usually

insufficient if the goal is high performance
•  Normally, we must tune the algorithm to the architecture
•  This requires measuring the performance of the result and making

changes to one or more stages of the algorithm
•  A performance model should allow fewer iterations around the loop

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

Aside
•  Occasionally, I will insert a stop sign to suggest that a

student in self-learning mode – or an instructor in class
mode – pause the video playback and brainstorm on
what comes next, before proceeding

•  Like having a performance model before collecting the

data, anticipating what is coming next will help learn it –
whether the anticipation proves met or not

•  The video will not stop automatically and these signs can
be ignored for fast review

•  Probably, I will pause too little… so pause it, yourself!

What might you tune?
•  Type of decomposition
•  Number of tasks
•  Clustering of tasks into processors
•  Amount of information exchanged
•  Frequency of exchanges
•  Aggregation of exchanges
•  Order of computation and communication
•  Recomputation
•  Mapping of tasks to processors
•  Type of solution method
•  Type of representation or basis
•  Type of formulation (!)
•  Goal of computation (!!)

None of these change
the problem being
solved, just how to
solve it

We may also be led to
formulate a different
problem that can be
solved more efficiently!

V&V
loop

Performance
loop

Designing	 an	 HPC	 code	 –	
the	 diagram	 that	 launched	 SciDAC	

c/o T. Dunning, SciDAC Report, 2000

Modeling hierarchy
•  Physical

conceptualization

•  Mathematical
model

•  Finite
discretization

•  Solution

•  Interpretation

•  Model convergence

•  Discretization
convergence

•  Algebraic convergence

validation

verification

code
optimi-
zation

“Code optimization” here refers to numerical algorithmics
Performance optimization is a different specialization

PHYSICAL WORLD

MATHEMATICAL MODEL

COMPUTATIONAL MODEL

SOLUTION ALGORITHM

COMPUTER CODE

HARDWARE EXECUTION

Some important algorithms
•  In 2000, Jack Dongarra & Francis Sullivan whimsically

introduced in IEEE Computational Science and
Engineering a set of the “Top 10” algorithms of the
previous century
–  actually, from the 1940s through the 1980s
–  some numerical, some non-numerical, and some “mixed”
–  typically simulation or optimization algorithms, or

algorithms that support these tasks
•  In 2008, Xindong Wu & Vipin Kumar systematically

performed a similar selection focusing on data mining,
for Knowledge and Information Systems
–  half from the 1990’s and half earlier
–  typically statistical and inferential tools

More important algorithms
•  In 2004, Phil Colella, in a talk entitled Defining Software

Requirements for Scientific Computing, named a set of
seven key algorithms the “Seven Dwarves”
–  giant in importance (!)

•  In 2006, a large team including David Patterson, John
Shalf, and Kathy Yelick wrote a report entitled Parallel
Computing Research: A View from Berkeley, in which
the original 7 dwarves were complemented by 6 more
from discrete mathematics – 13 in all

•  In 2009, a large team led by Vladimir Safanov at St.
Petersburg, published open source implementations of
all 13 dwarves under the Parallel Dwarfs project
–  https://paralleldwarfs.codeplex.com Could be a good course

project to push one of
these along

What would you put on these
lists?

.

Ø  1951	 –	 k	 Nearest	 Neighbor	 Classification	 (kNN)	
Ø  1957	 –	 K-‐means	 Clustering	
Ø  1961	 –	 Decision	 Trees	
Ø  1977	 –	 Expectation	 Maximization	
Ø  1984	 –	 Classification	 and	 Regression	 Trees	 (CART)	
Ø  1994	 –	 Apriori	 Algorithm	
Ø  1995	 –	 Support	 Vector	 Machines	
Ø  1997	 –	 Naïve	 Bayes	
Ø  1997	 –	 AdaBoost	
Ø  1998	 –	 PageRank	

Rio Yokota’s interpretation of the
seven dwarves

Grumpy Sleepy Happy

Doc
Bashful

Dopey
Sneezy

c/o Walt Disney

Ø 	 1960’s	 –	 Fast	 Fourier	 Transform	
Ø 	 1970’s	 –	 Multigrid	 Methods	
Ø 	 1980’s	 –	 Fast	 Multipole	 Methods	 	
Ø 	 1990’s	 –	 Sparse	 Grid	 Methods	
Ø 	 2000’s	 –	 Hierarchically	 Low-‐Rank	 Matrix	 Methods	

I

J

(i, j)i

j

(r,⇤) (r,⇤) (r,⇤)

High performance implementations
•  All high performance implementations of these

algorithms will exploit parallelism
•  A goal of the course will be to classify parallel

approaches and associate them with
–  Hardware that can support them
–  Algorithms that can benefit from them
–  Software that can implement them

•  A successful student
–  builds categories
–  populates them with examples
–  connects new material to an expanding reference set

•  To formulate parallel programming categories, we look back
50 years to …

Flynn’s taxonomy (1966) of
parallel architectures

Many significant scientific problems require the use of
prodigious amounts of computing time. In order to handle these
problems adequately, the large-scale scientific computer has
been developed. This computer addresses itself to a class of
problems characterized by having a high ratio of computing
requirement to input/output requirements (a partially de facto
situation caused by the unavailability of matching input/output
equipment). The complexity of these processors, coupled with
the advancement of the state of the computing art they
represent has focused attention on scientific computers. Insight
thus gained is frequently a predictor of computer developments
on a more universal basis. This paper [reviews] possible
organizations starting with “concurrent” organizations presently
in operation and examining other theoretical possibilities.

Flynn’s analysis (1972) of
architectural effectiveness

The historic view of parallelism […] is probably best
represented by Amdahl […] that certain operations […] must
be done in an absolutely sequential basis. These
operations include, for example, the ordinary housekeeping
operations in a program. In order to achieve any
effectiveness at all […] parallel organizations processing N
streams must have substantially less than 1 / N x 100
percent of absolutely sequential instruction segments. One
can then proceed to show that typically for large N this does
not exist in conventional programs. A major difficulty with
this analysis lies in the [implication…] that what exists today
in the way of programming procedures and algorithms must
also exist in the future.

Flynn’s hardware taxonomy

commonly used
scientific model

Single Program, Multiple Data (SPMD) is a natural generalization of Single Instruction,
Multiple Data (SIMD) when each processing unit executes its own local copy of the
instruction stream. These copies can branch differently depending upon the data.

c/o The Wikipedia

7 parallel algorithm paradigms

Paradigm Examples
Embarrassingly Parallel Monte Carlo
Fork-Join OpenMP parallel for-loop
Manager-Worker Genetic Algorithm
Divide-Conquer-Combine Parallel Sort
Halo exchange Stencil-based PDE solvers (FD, FV, FE)
Permutation Matrix-matrix multiplication (Cannon’s algorithm)
Task Dataflow Breadth-first Search

c/o Thomas Sterling

Embarrassingly Parallel
•  A problem that requires little or no effort to identify and

launch many concurrent tasks, and in which there is no
internal synchronization or other communication or load
balancing concern, is called “embarrassingly parallel”
–  The term dates to 1986, in an article by Cleve Moler (founder of

MATLAB)
–  “Pleasingly parallel” is a popular alternative

•  The classic such algorithm is Monte Carlo (1946), which
is the first of the “Top 10” algorithms of the last century
–  Monte Carlo also has a popular alternative: the Metropolis

Algorithm, named for Nicholas Metropolis who used it in early
computations of the Ising Model of phase change in 1952

•  Monte Carlo is a statistical approach for studying
systems with a large number of degrees of freedom,
such as neutron transport (for which it was first described
by Von Neumann in 1947)

•  It is the algorithm of choice for integration in high
dimensions but it can be demonstrated in low, here two

Embarrassingly Parallel example:

Monte Carlo

•  Monte Carlo is arbitrarily parallelizable, but agonizingly
slow
–  convergence rate is proportional to N-1/2

•  increasing work (here the number of samples) from 10 to 1,000 gives only
a reduction of error of about a factor of 10

–  ideally, we would like convergence rate like N-2

•  increasing work from 10 to 1,000 would reduce error by a factor of 10,000
•  we are accustomed much better rates in the quadrature of continuous

functions

•  In high dimensions, when measured in terms of function
evaluations, Monte Carlo can be the method of choice,
because of the curse of dimensionality, but beware of an
indictment attributed to Von Neumann: “Anyone using
Monte Carlo is in a state of sin.”

Embarrassingly Parallel example:

Monte Carlo

•  Markov Chain Monte Carlo (MCMC) is a form of Monte
Carlo that chooses smartly conditioned random samples
–  not statistically independent, but correlated for efficient “mixing”
–  includes: Metropolis-Hastings (1970), Gibbs sampling (1984), and

many others that restore some respectability to MC J

•  Multi-level Monte Carlo (MLMC) is a form of Monte Carlo
that evaluates its samples on a hierarchy of models,
coarsened from the model for which the solution is sought
–  most of the work is done on the coarser models, which are often

exponentially cheaper, while obtaining the accuracy of the finest
–  invented by Mike Giles (2008) and very hot presently

•  Of course, there is also MLMCMC, the methods MCMC and
MLMC being composable

•  Quantum Monte Carlo (QMC) is an application to quantum
many-body systems – many computer codes

Monte Carlo advances

Fork-Join

•  Launches parallel threads within an overall serial
context

•  Exploits concurrency independent tasks that
become available in batches

•  May incur overhead of creation and termination of
the threads

•  Presumes that the concurrent tasks require similar
time to completion

Fork-Join example:

OpenMP loop

•  Code expresses 25 independent ops in for-loop
•  OpenMP pragma directs the compiler to batch them

concurrently
•  Storage of a[] and b[] is shared – visible and writeable to

all threads of execution
•  For OpenMP standard (and training) see openmp.org

Aside
•  This is not a course in parallel programming
•  Acquisition of skill in parallel programming (using

MPI, OpenMP, CUDA, etc.) is encouraged
–  short courses are available at many conferences, at

many universities, and online
–  rich literature, excellent open source demos

•  Programming produces insight and intuition hard
to obtain from other investments of time

•  Fortunately, the maturity of parallel computing
today allows many computational scientists to be
productive at a higher level
–  e.g., working within an API like PETSc, Trilinos, …

Manager-Worker
manager

worker worker worker worker

•  This paradigm is classically known as “master-slave”
•  Manager assigns individual tasks to workers, receives

the responses and dynamically constructs and assigns
new tasks until work is complete

•  Unlike Fork-Join, it does not presume that the tasks are
well balanced, and it is not pre-scheduled

•  Workers do not synchronize or exchange among selves

Manager-Worker example:

Global parallel genetic algorithm
•  Genetic algorithms are efficient stochastic search

methods based on principles of natural selection and
genetics

•  They find an optimum by manipulating a population of
candidate solutions against a fitness function

•  Good candidates are preferentially selected to mate
(combine their traits by crossover) and reproduce

•  Many variations exist, including mutations outside of the
parents

•  The population can allow global exchanges or can be
confined to different islands

Manager-Worker example:

Global parallel genetic algorithm
•  Simple manager-worker

•  Hierarchical model

M M

M M

w w w w

Manager

Worker 1 Worker 2 Worker n

c/o Eric Cantu-Paz

Divide-Conquer-Combine

1.  Given a “large” instance of a problem, partition it
into two or more (independent) subproblems

2.  Solve the subproblems (concurrently)
3.  Merge the subsolutions into a solution of the

original
 Recur if step 2 is still “large”

Divide-Conquer-Combine example:

Quicksort
•  Named one of the “Top 10” algorithms of the last century

–  See introductory article by Joseph Jaja

•  Invented in 1962 by Tony Hoare (born 1934, Turing Prize
winner for definition and design of programming languages,
long list of professional honors)

•  Important not just as an early paradigm for parallel “divide-
and-conquer”, but also as an example of a randomized
algorithm
–  randomized algorithms are extremely hot today, in both discrete and

continuous forms

•  Long history of complexity analysis for different cases of
algorithm choices and input conditions

•  Worst case running time is O(N2) for input size N, but with
probability 1-N-c, it is O(N log N) – an “optimal” algorithm

Divide-Conquer-Combine example:

Quicksort

The numbers represent a orderable set of keys in records to be sorted

Divide-Conquer-Combine example:

Parallel sample quicksort
As evenly as possible distribute N keys among P processors (here N=8 and P=2)

Run sequential quicksort on local data

Sample the sorted sublists at every N/P2 locations

Divide-Conquer-Combine example:

Parallel sample quicksort
Gather samples to the root (P=0) and run sequential quicksort

Broadcast P-1 pivot values to all processes

Divide local sorted segments on each process into P segments based on pivots

Divide-Conquer-Combine example:

Parallel sample quicksort
Perform an all-to-all communication on the P segments, with Pi keeping the ith
segment and sending the jth segment to Pj

Merge incoming (already sorted) sub-segments into local lists

The final list of keys is distributed, which is probably what is desired if N is large
compared to what a single processor can store in the first place

The rest of the record volume associated with each sorted key can be moved into
place

Divide-Conquer-Combine example:

Quicksort
•  After 54 years, quicksort remains the sorting

routine of choice for large N unless there exists
additional detailed information about the input

•  Other means of selecting the pivot exist
–  Clearly selecting the median is best
–  Normally, there is no fast way to find the median
–  Fixed position works poorly unless the input is random
–  Finding the median of a randomly chosen subset may be

superior to a single random choice

•  Complexity can be measured in individual comparison
operations, or can incorporate memory and
communication costs

Halo Exchange
•  Many computations, especially partial differential

equations, are executed by SPMD programs in which
each process advances at least one subdomain of the
overall PDE domain, and every subdomain is assigned to
at least one process (usually a 1-to-1 mapping)

•  By their mathematical nature, PDE codes discretize
derivatives, which are approximated with local “stencils”

•  Partitioning into subdomains requires replication of the
points of a stencil that belong to a neighboring
subdomains, the replicated region called a “halo”

•  Parallel implementation requires (usually symmetrical)
nearest-neighbor communication

Halo Exchange example:

2nd-order Laplacian in 2D
•  Halo exchange is

regular and
frequent and is
built into
communication
subroutines, e.g.,
in the standard
Message-Passing
Interface, MPI

c/o Fabian Dournac

owned cell

halo exchange cell

ghost boundary cell

unused for 5-pt star
8x8 domain in four 4x4 subdomains, with halos and ghosts

-1

-1

-1

-1 4

Halo Exchange example:

4th-order Laplacian in 2D

c/o Michael Flynn

9

9

•  For higher-order
discretizations,
stencils and halos
need to be wider

•  Everything in the
black square is
owned by one
interior subdomain
(with no boundary
points)

•  The magenta is a
double-wide halo

-16

-16

-16

-16

60 1

1

1

1

Halo Exchange example:

Sparse matrix-vector multiplication
•  Stencil evaluation is a special, structured form of a more

general operation, sparse matrix-vector multiplication
•  For a matrix of size N x N and vector of size N, matrix-vector

multiplication is given by

 where Aij is the (i,j)th element of the matrix and bj is the jth
 element of the vector
•  For a sparse matrix, however, most of the Aij values are

zero, suggesting that memory should be allocated for every
element
–  for 2nd-order Laplacian, Aii = 4 and just four off-diagonals are nonzero

Halo Exchange example:

Sparse matrix-vector multiplication
•  Sparse matrix Aij can

use compressed
sparse row (CSR)
format

•  Then the matrix, the
input vector b, and
the output vector x
can all be partitioned
by rows with a block
of rows assigned to
each processor

•  Information from
vector b is then
potentially nonlocal
to the processors
computing a local
pieces of x

Halo Exchange example:

Sparse matrix-vector multiplication
halo exchange terms

Permutation
•  Permutation is a class of data-parallel SPMD algorithms,

in which the same local program is simultaneously
applied to different data in a series of stages

•  Between each stage is an all-to-all permutation of the
data

•  The Fast Fourier Transform is a famous example,
considered later

•  Continuing upon matrix-vector multiplication, we consider
matrix-matrix multiplication, C = A x B

•  Cannon’s algorithm (1999) is a special form of dense
matrix-matrix multiplication in which two N x N matrices
are multiplied by a array of processors, each
of which owns a block of A, B , and C

Permutation example:

Dense matrix-matrix multiplication
•  Matrix-matrix multiplication is an O(N3) operation on

O(N2) data

•  Its high arithmetic intensity (ratio of flops to bytes) allows
it to “cover” data motion well

•  Each block of the product on each processor is the result
of blocks of each of the factors

•  All but one of these pairs are initially nonlocal

Permutation example:

Dense matrix-matrix multiplication

Permutation example:

Dense matrix-matrix multiplication
•  From the initial state shown

•  Cannon’s algorithm is
row i of matrix A is circularly shifted by i blocks left
col j of matrix B is circularly shifted by j blocks up
For k = 0 to -1:
 Pij multiplies its two entries and accumulates
 each row of A is circularly shifted 1 element left
 each col of B is circularly shifted 1 element up

Permutation example:

Dense matrix-matrix multiplication
row i of matrix A is circularly
shifted by i blocks left

col j of matrix B is circularly
shifted by j blocks up

Permutation example:

Dense matrix-matrix multiplication
Layout after initialization

Permutation example:

Dense matrix-matrix multiplication
Accumulate* and shift

*The bracket [i+j+k] is interpreted in the sense of modulus (4 in this example)

Permutation example:

Dense matrix-matrix multiplication
•  The distribution

after each phase is
depicted here

•  It is readily verified
that the correct
accumulations
have occurred

Permutation example:

Dense matrix-matrix multiplication
Flow chart and pseudocode

(*)

(*)

(*)

Task Dataflow
•  While any parallel algorithm can be expressed as a

directed graph where the nodes are tasks and the
edges are data dependencies, many algorithms that
explore graphs are themselves naturally expressed
as task dataflow to maximize concurrency

•  A goal is to maximize the number of tasks that can
be executed concurrently (breadth) and to minimize
the critical path of dependences (depth)

Task Dataflow example:

Breadth-first search
•  Breadth-first search is a key component of

numerous larger programs and is tested in the
Graph500 benchmark

•  A particular vertex is named as root
•  Each adjacent vertex to the root is then traversed

first
•  When no more immediate root neighbors exist,

previously labeled neighbors traverse their
neighbors, thereby establishing the level (or
distance) of every vertex from the root

•  It should be compared to a depth-first search, which
explores as far as possible before backtracking

Task Dataflow example:

Breadth-first search

c/o Wikipedia

Vertex labeling from
a breadth-first search

Vertex labeling from
a depth-first search

Task Dataflow example:

Breadth-first search
•  Example for breadth-first search showing final level 0,

level 1, and level 2
•  Seven edges to traverse, on two of which the vertex

has been previously visited, in sequential mode

Task Dataflow example:

Breadth-first search
•  Vertices are partitioned by process each with its own

edge list, including the process number of the adjacent
vertex

Task Dataflow example:

Breadth-first search
•  To each vertex is associated a parent vertex label and

a binary flag indicating if the vertex has been visited
•  Parallel BFS is initialized

Task Dataflow example:

Breadth-first search
•  At the first stage, a level 1 vertex is found on process 1,

which then begins to search concurrently

Task Dataflow example:

Breadth-first search
•  Two stages are completed in the time of five edge

traversals rather than seven for sequential

Summary
•  Four steps in creating a parallel program
•  Co-design of solution algorithm and problem

formulation with architecture, to tune for
performance

•  Top 10 algorithms for simulation
•  Top 10 algorithms for data mining
•  7 floating point “dwarves” and 6 discrete “dwarves”
•  5 optimal scalable, hierarchical algorithms
•  Flynn’s classification for programming paradigms

supported in the hardware

Summary
•  Embarrassing Parallelism

– Monte Carlo
•  Fork-Join

– OpenMP “for” loop
•  Manager-Worker

– Global Parallel Genetic Algorithm
•  Divide-Conquer-Combine

– Quicksort

Summary
•  Halo Exchange

– Stencil Evaluation / Sparse Matrix-Vector
Multiplication

•  Permutation
– Dense Matrix-Matrix Multiplication

•  Task Dataflow
– Breadth-first Search

Principal slide credits
•  Thomas Sterling (U Indiana)
•  Matthew Anderson (U Indiana)
•  Maciej Brodowicz (U Indiana)
•  plus individual slides as marked

