Unit 1, Part 2 prolog

Introduction to High Performance Computing

A Blue Waters Online Course Fall 2016

David Keyes, Instructor

Professor of Applied Mathematics and Computational Science Director, Extreme Computing Research Center

King Abdullah University of Science and Technology

Course overview

- Introduction to central concepts, the hardware and software environments, and selected algorithms and applications of high performance computing
 - especially high performance computational science and engineering
 - emphasis on tightly coupled computations that are capable of scaling to thousands and even millions of processor cores
- Range of course material
 - some *high-level* surveys of motivating applications (like Part 1 of this unit, a case study motivated by computational aerodynamics)
 - some low-level details of implementation (examples to come)
 - most of the time *in between* analyzing parallelism in algorithms (today)
- Students run some demonstration codes provided and do a modest amount of their own programming
 - using PETSc, the "portable, extensible toolkit for scientific computing" (which is a high-level applications programmer interface for distributed memory programming)

Course flavor

- Targeting "parallel computer literacy"
 - develop intelligent critics and consumers
 - future developers of the infrastructure from CS and math
 - applications scientists and engineers, as well
 - acquaint student researchers with what is available in standard open-source parallel scientific software
 - what it can do for us
 - how it works
 - how it is layered and composed
- Scientific computing-oriented
 - crux of motivation for much of supercomputing!
 - scientific computing is the 1% that used to drive the 99% but is now increasingly driven by it

Pedagogical philosophy

- We will spiral-staircase through the material
- Each sector of the staircase is subject matter (algorithm, architecture, application, software, etc.)
- Each time we reach a new level with one sector, we are ready to revisit the next sector on a higher level

Review of Part 1 case study

- Application
 - opportunity for real-time computational aerodynamics
 - penetration of CFD into airplane design
- Architecture
 - limiting nature of speed of electrical signal propagation
 - pipelining
 - parallelism
 - Moore's Law (1965)
- Algorithm
 - discretization of conservation laws
 - limiting nature of speed of physical signal propagation
 - Courant-Friedrichs-Levy stability criterion (1928)
 - Amdahl's Law (1967)