
A PERSPECTIVE ON QUICKSORT
This article introduces the basic Quicksort algorithm and gives a flavor of the richness of its
complexity analysis. The author also provides a glimpse of some of its generalizations to
parallel algorithms and computational geometry.

S orting is arguably the most studied prob-
lem in computer science, because of both
its usc in many applications and its in-
trinsic theoretical importancc. The basic

sorting problem is the process of rearranging a
given collection of items into ascendiiig or de-
scending order. The items can he arbitrary oh-
jccts with a lincar ordering. For example, the
items in a typical business data-processing all-
plication are records, each containing a special
identifier field called a key, and tlic records must
he sorted according to their keys. Sorting can
greatly simplify searching for or updating a
record. This article focnses only on the case
whcrc all the items to be sorted fit in a machine’s
main memory Otherwise, tlic main objective of
sorting, rcfcrred to as extemdsorting, is to min-
imize the amount of 110 communication, an is-
sue this article docs not address.

Although researchers have developed and an-

1521-96151001$10.00 01000 IEEL

alyzed many sorting algorithms, the Quicksort
algorithm stands out. This article shows why.

Staying power
Tony Hoare presented the original algorithm

and several of its variations in 1962,‘ yet Quick-
snrt is still the hcst-known practical sorting al-
gorithm. This is quite surprising, given the
amount of research donc to develop faster sort-
ing algorithm during the last 38 years or so.
Quicksort remains the sorting routine of choice
except when we have more detailed information
about the input, in which case other algorithms
could outperform Quicksort.

Another special featlire of the algorithm is the
richness of its complexity analysis and svuchlre,
a feature that has itispired the development of
many algorithmic techniques for various combi-
natorial applications. Although the worst-case
complexity of Quicksort is poor, we can rigor-
ously prove that its average complexity is quite
good. In fact, Quicksort’s average complexity is
the hest possible under certain general complex-
ity models for sorting. More concretely, Quick-
sort perforins poorly for almost sorted inputs but
extremely well for almost random inputs.

IANUARY/FE~RUARY 2000 43

In retrospective, Qnicksort follows the divide-
and-conquer stratcgy (likely one of the oldest
military stratcgies!), one of the most powerful
algorithniic paradigms for designing efficient al-
gorithms for combinatorial problems. In partic-
ular, a variation nf Quicksort, which IIoare also
mentioncd in his original paper, is based on a
randomization step wing a random-number
generator.

Researchers cultivated this idea years later and
significantly enriched thc class of randvniized al-

than the pivot and no clenicnt in tlie right
subarray is smaller than the pivot.
Recursively sort thc lcft and the right sub- 3.
arrdys.

Ignoring the iinplemeiitation details for now,
it is intuitively clear that tlie previous algorithm
will cnrrcctly sort the elements of A. Equally
clcar is that the algorithm follows the tlividc-
and-conquer strategy. In this case, Stcps 1 and 2
correspond to thc partitioning phase. Step 3

, .

uicksort computer science. Yon could
argue that thcse developincuts
arc somewhat indcpendeiit of
Quicksort, hut niany of thc
randomized combinatorial al-
gorithms arc based on thc

ts far samc randomized divide-and-
conquer strategy described in
IIoare’s original paper. Indeed,
many randoniized algorithms
in computational geometry
can hc viewed as variatinns of

Finally, a generalization of
the randoinizcd version of the Quicksort algo-
rithm results in a parallel sample-sorting strateLy,
the best-known strategy for sorting on parallel
machines, both from a theoretical pcrspective and
from extcnsive experinicntal studies.’

m the

3 Quicksort.

The basic algorithm
T h e ilivide-and-coiiqucr strategy has three

phases. First, divide the prohlem into several suh-
problems (typically two for sequential algorithms
and more for parallcl algorithms) of almost eqnal
sizes. Second, solve iiidependcntly the resulting
snhproblems. Third, merge the solutions of the
subproblems into a solution for the original
problem. This strategyh effcienLy depends on
finding efficient prvcednres to partition the prob-
lem during tlie initial phasc and to merge thc so-
lutions during the last phasc. For example, the
fast h’nuricr transform follows this strategy, as
does Quicksort. IIere is a high-lcvcl description
of Quicksort applicd to an arrayA[O : 72 - I]:

1.

2.

Select a n clcmcnt kom A10 : n ~ 11 to be tlie
pivot.
Kearrange the elements iifA to partitionA
into a left subarray and a right sntmray, such
that no element in thc lcft subarray is largcr

ing a merging phase nnnccessary.
Two crucial iniplenient&on issms arc missing

from onr initial description of the Quicksort alga-
rithm. The first concerns the inethod for selecting
the pivnt. ’I’hc second concerns the method for
partitioning the input once the pivot is selected.

Selecting the pivot
Because a critical assinnption for an efficient

divide-atid-conquer algorithm is to partition the
input into ahnost equal-sizc picccs, we should sc-
lcct the pivot so as to induce almost cqual-size
partitions of the array A. Assuming A cnntains n
disunct cleinents, the bcst choice would he to sc-
lect thc nicdian ofA as thc pivot. Although some
good theoretical algorithms can find thc median
without first sorting the a r r q they all incur too
much overhead to be iisefiil for a practical imple-
mentation of Quicksort.

In reality, there are three basic methods tn sc-
lect the pivot. T h e first and simplest i s to select
an element from a fixed psi t ion ofA, typically
the first, as the pivot. In gcneral, this choice of
the pivot does not work well unless the input is
random. If tlie input is almost sorted, the input
will be partitioned extremely unevenly during
each iteration, resulting in a vcry poor perfnr-
inaiice of the overall algorithm. ‘Ihc second
method for sclecting the pivot is to try to ap-
proxiinate the median ofA by computing the
median of a small subset ofA.

One conimonly used method is to select the
pivot to hc the median nf thc first, the middlc,
and the last cleinents ofA. Such a method works
wcll, even though we may still end up with very
uneven partitions dnring each iteration for cer-
tain inputs. Finally, wc can randomly sclcct a n
clciiient from A to be the pivot hy using a ran-
dim-nuinher gencrator. In this case, we can rig-
orously prnvc that each step will result in an al-
most even partition with very high probability,
regsnllcss of tlie initial input distributinn.

44 COMPUTING IN SCIENCE br ENGINEERING

Partitioning the input
Because the algorithm is recursive, I describe a

simplc partitioning procedure for a general sub-
arrayA[/, r], where / < r. The procediire manip-
ulatcs two pointcrs i andj, where i movcs kom
left to right starting a t position 1, a n d j moves
from right to left starting at position r. T h e
pointer i is cuntinually incremented until a n cl-
ementA[i] larger than the pivot is cncoiintercd.
Similarly,j is decremented nntil a n element A)]
smaller than the pivot is cncouutered. At that
time, A[i] arid AV] are exchanged, and the
process continncs until the two pointers cross
each other, which indicates the completion of
the partitioning phasc. More precisely, F i p r c 1
gives the following pseudocode Iiroccdnre for
partitioningA[/, r], where all the elements ofA
arc assmncd to bc distinct, and the left-most el-
ement is chusen as the pivot,

'The partition procedure starts by initializing
tlic pointers i a n d j and selecting the left-most
element to be the pivot. Note tha t j is initially
set to the value T + 1 so that the while loop for
j in Step 2 will start by examining tlic snharray's
right-most clcmcnt. The last two assignments in
Step 2 ensure that the pivot is placed in its cor-
rect position in the final sorted order of A. T h e
partition procedure takes linear time with a very
small constant factor. Donald IGiuthj attributes
this particular partitioning procedure to Robert
Sedgewick.4

Quicksort initially calls the partition proce-
dure with the values I = 0 and 7 = n - 1, lollowed
by reciirsive calls to handlc tlic subarrays /Ill,
j - 11 and A[j + 1, 4. We can eliminate the re-
cursive calls by using a stack to kccp track uf tlic
partitions yet to be sorted. We run Quicksort
nntil tlie number of clcments in tlie subarray is
small (say, fewcr than 30); thcn wc iisc a simplcr
sorting proccdurc, such as insertion surt.

Complexity analysis
We can nse several measures to analyze a sort-

ing algorithm's performance. We can count the
number of comparisons the algorithm makes, be-
cause comparisons seem to bc thc major opera-
tions performed by any general surting algorithm.
Another important paratneter is the number of
swaps the algorithm incurs. Yet another measure,
one that is perhaps more relevant for todayh
processors and their use of memory hierarchies
(typically two levels of cache and main memory),
is the data movement and its spatial locality Here,
I concentrate on the iiumher of comparisons, for

procedure partitiOn(A, 1, U)

begin

Step 1. Set i = 1; j r + 1; pivot A[ll;

Step 2. while(true) (
while(A[++il < pivot);
while(A[--jl > pivot);
if i < j then exchange d[il and A[jl;

else break;
1

A[ll = A[jl;
A[jl = pivot;

end procedure

Figure 1. The partitioning procedure for A[/, r]

which there are well-known inodcls (for example,
algebraic decision trccs5) that can derive nonlinear
lowcr bounds for sorting.

Worst-case analysis
In general, an algorithm!? most commonly

uscd pcrforinancc metric is the asyniptotic esti-
mate of the insximum amount of resources (for
example, the number of operations, the number
of mcmory accesses, and memory size) required
by any instance of a problcm of s i x n. In sort-
ing, we determine the asymptotic number of
comparisons required in the worst case. Let T(n)
be tlic numbcr of comparisons required by oiir
Quicksort algorithm, wing any of the methods
just described for selecting the pivot. 'l'hcn the
following recurrence equations express T(n):

~ (n) = inax {T(i)+T(n-i)}+cn

T(I)= @,(I)
IKiYi-1

where 02 is an upper bound on the tiine required
to partition the input. T h e parameter i is the size
of thc left partition rcsulting after the first itera-
tion. Because we are focusing on the worst-casc
sccnario, we take tlic maximum uver all possible
values of i. It is intuitively clear that the worst
case occurs when i = 1 (or equivalently, i = n - I),
which can happen for each of our three pivot-
selection methods. Therefore, T(n) = @@*),
which is inferior to the worst-case complexity of
several of the other known sorting algorithms.
IIowcver, what makes Quicksort so interesting
from the complexity-analysis point ofvicw is its
far superior average complexity.

IANUARYIFEBRUARY 2000 45

Average-case analysis
Although performing a worst-case analysis on

an algorithm is usually casy, it often resiilts in a
very pessinustic pcrformancc cstiinate. TGiown al-
tcrnative performance iiicasnres seem more use-
ful, hut deriving their asymptotic behavior is sig-
nificantly tnorc difficult. One siich measure is to
estahlish the average coiiiplexity ondcr a certain
probability distribution of the input. Not only is
deriving such a bound difficult, hut also this ai>-
proach Gails to offer adequate ways for defining the
probability diswibution of die input in most cases.

An altcriiative approach is to Ict the algorithm
me a random-numher gcnerator (such as our
third method for randomly sclccting thc pivot
from tlic input array). In this case, a probabilistic
analysis of tlic algorithm docs not require any as-
sumptions about the input distribution, and hence
holds for any input distribution. This approach
gives rise to the so-called mndomizerl nlgnrithms.

IIcre, T consider die case whcn the array's first
elenient is sclccted as tlic pivot and assuiie raii-
dom input. So, tbc pivot is equally likely to bc
of any rank between 1 atid n. 'l'hereforc, the av-
erage complexity is givcn by thc recurrence
equations,

T(I)=O(l)

The first equation is equivalent to

Moltiplyiug both sides by n gives

Subtracting tlic recurrence equation corre-
sponding to n - I from the one corrcsponding
ton, we get

n T (n) ~ (i z - 1) T (1 2 - 1) = 2 ~ ~ n - 1) + 2 c n - c ,

Rearranging the t e r m and dropping c (it is
asymptotically irrclevant) gives

nT(7z) = (n + l)T(n ~ 1) + 2'7l

Dividing hoth sides by n(n + 1) givcs

T(rr) l (n- I) 2c +--' _ - -__
n + l n n + l

In particular, we havc this sequence of equations:

' / '(a) T(n-1) 2r
71tl n n c l
' l ' (n - I) T(n-2) 2'

71 - 1 12

- t-

_ _ - ~ - +-

T(2) '/'(I) 2c
3 - z ' i

Adding the above cquations and considering that

wherc y = 0.577 is Eulcr's constant, wc find that
T(n) = O(n log n).

Under a fairly general model for sorting that
cven allows algebraic operations,' no algorithm
can beat this bound. This analysis forinally jus-
tifies the superior pcrforinance of Quicksort in
niost practical sitiiatioos.

Analysis of randomized Quicksort
Consider the case where the pivot is randomly

sclccted from tlic input array. With bigh proba-
bility-that is, with probability I - nP for some
positive constant c-the resulting Quicksort al-
gorithm's complcxity is O(n log n), regardless of
the initial input distrihution.

Our strategy is as follows. We vicw the Quick-
sort algorithm as a sequence of iterations such
that tlic first iteration partitions the input into
two hnckets, the second iteration partitions the
previous two buckets into four buckets, and so
on, until each huckct is small enough (say, 5 30
eletncnts). We then use insertion sort to sort
these Iiuckcts. Another way of looking at this is
to unfold the recursion into a tree of partitions,
whew each level of the tree corresponds to an
iteration's partitions. Partitioning the huckcts
during cach iteration takes a deterministic O(n)
time. So, our goal is to show that the nurnbcr of
iterations is O(log n) with Iiigh probability.

For any specific clement e, the sizcs of m y two
consccutive buckets containing e decrease by a
constant hctor with a certain probability (Claim
1). Then, with probability 1 - O(n-'), tbc bucket
containing e will be of size 30 or less after O(log
n) iterations (Claim 2). Using noole's inequality,
we conclude that, with probability 1 - O(n-'), die
bucket of every clement has 5 30 clcnients after
O(1og n) iterations.6

Let e be an arhitraiy elctncnt of our input array
A. Lct 75 be the sizc of the bnckct containing e at
the end of thcjtli partitioning step, whcrej t 1.

46 COMPUTING IN SCIENCE h E N G I N E E R I N G

We set no = n. 'Ihen, this claini holds:

Claim 1. Pr(n,+, > 7ni/8) < 1 /4, lor any j 2 0.

Proof. An element n partitions tlie.jtli bucket
into two buckets, one of size at least 7n,/8 if and
only if rank(a : b;) 5 nj/8 or rmk(n : E;) 2 7 9 .
T h e probability that a random clcincnt is among
the smallest or largest n;/8 elenients of Ej is a t
most 1/4; hence, Claim 1 follows.

We fix the element e ofA, and we consider the
sizes of the huckets containing E during vasious
partitioning steps. We call thejth partitioning
step succcssful if n; < 7ni_,/8. Because nlI = n, thc
size of the bucket contaiiiiug e after k successful
partitioning steps is smaller than (7/8)kn. Tlicre-
fore, e can participate in at nos t c log(n/30) suc-
cessful partitioning steps, where c = l/log(S/7).
For the remainder of this proof, all logarithms
are to the base 8/7; so die constant c is equal to 1.

Claim 2. Among 20 log n partitioning steps, the
probability that an element egoes through 20
log n - log(n/30) unsuccessful partitioning steps is
0(~-7).

Proof. The random choices made at various par-
titioning steps are indcpcndenc therefore, the
events that colistihitc thc successful partitioning
steps are independent. So, wc can model these
events as Bt!i*noulli triak. Let X he a random vari-
able denoting the iininhcr of unsnccessf~il parti-
tioning steps among the 20 log n s t e p Therefore,

Given that

we obtain that our probahility is

So, we have proven that the algoritlnn takes
O(n log n) time with high prohahility.

Extension to parallel processing
For our pmposcs, a parallel niacliinc is simply a

cdlection of processors interconuectcd to allow
tlie coordination of their activities and the
exchange of data. Two types of parallel machines
airrently donunate. The first is symmetric multi-
processors (SMPs), which are tlie main choice
for the hieh-end server . , 1 _

Y

market, and soon will he
on most desktop con-
ptcr5. Tlic \ccotid type
clusters high-end pro-
cessors through pro-
prietary interconnect
(for example, the TRM
SP IIigli-Performance

name s$ip/e sort.
Switch) or through off-
the-shelf interconnect
(the KTM switch, giga-
bit Ethernet, and so onj.

varioiis resources on the parallel machine to
speed iip the execution time. In addition to dis-
tributing the load almost evenly among the vm-

ors, a good parallel algorithm should
minimize the coiiiinunicatioii and coordination
among the different processors. Parallel algo-
rithms often perform poorly (and sometimes ex-
ecution time increases with the number of
processors) primarily because of the ainoiint of
connnnnication and coordination required he-
tween the different processors.

Quicksort's strategy lciids itsclfwell to parallel
machines, resulting in sample sorting:

1.

2.

A parallel sorting algorithm tries

Sclectp - 1 pivots, whcrcp is tlie nuinher of
processors available.
Partition the input array inti, p suharrays,
such that every clement in the ith subarray is
smaller than each element in the (i + 1)th

< y /20elognj'/lj/= y (5elugnj' suharrav.
b -

j>i&,,(.i (4) i> ig iOcn\ j 3. Solve tl;e problem by getting the ith proces-
sor to sort the ith su1)array.

Selogn

One way to choose the pivots is by randimily
Therefore, Claim 2 follows.

By Bode's inequality, the probability that one
or more clctnents of A go through 20 log n -
log(n/30) unsuccessfiil s t e p is a t most O(n x n-7)
= O(n-')). Thus, with prohahility 1 - O(n-'j, the
algorithm terminates within 2 0 log n iterations.

sainpling the input elements-hetice, the name
.snnzple SOW (A generalization of the buclcct-
sorting method, also called sample sort, involves
sampling as welL7) As in the sequential case, the
algorithm's efficiency depends on how the piv-
ots are selected and on thc method used to par-

]ANUARY/FEBRIJARY 2000 47

tition the inpnt into thep partitions.
Before addressing these issncs, letk definc our

problem morc precisely We havc n distinct cle-
nients that are distributed evenly among thc p
processors of a parallel machine, where we as-
siinic that p divides n cvenly. The pnrposc of
sorting is to rearrange the elcments so that the
smallest n /p elcments appear in ptnccssor PI in
sorted ordcr, the second smallest n/p elemcnts
appear in processor P2 in sorted order, and so on.

hsiniplc way to realize the sample sorting strat-
cgy is to havc each proccssor choosc s samples from
its n/p input elemcnts (In thc next section, I’ll show
yon one way to do this.), ronte thcps samples into a
single prqcessor, sort the samples on that processor,
and selcct evety sth element as a pivnt.8 Fich
processor partitions its inpnt elcnicnts into p
groups using thc pivots. Thcn, the first gronp in
each processor is sent to PI , the second to P2, and
so on. Finally, we sort the overall input by soidng
the elements in each processor separately.

The first difficulty with this approach is the work
involved in gathering and sorting the samples. A
larger value of A. iniprnvcs load balancing hut in-
creases overhead. The second difficulty is that the
communication required for routing thc elements
to the appropriate proccssors can hc cxtreniely in-
efficient hecausc of large variations in thc number
of eleincnts destincd for differcnt processors.

Considcr a variation that scalcs optimally with
high prohahility and has performed cxtreniely
well on several distrihnted-ineiiiory parallel ma-
chines using various benchmarks.2 Here are the
algorithm’s steps:

1. Randomization. Each processor Pi (1 I i S p)
randomly assigns each of its n/p elcinents tn
one ofp huckets. With high protiahility, no
bnckct will reccivc more than c1(n/p2) elc-
ments for some constant cI. Each processor
then riiutcs the contcnts of hockctj to 13.
Local sorting. Each prnccssor sorts thc ele-
ments receivcd in Step 1. Thc first proccssor
thcn selects p - 1 pivots that partition its
sorted snhlist evenly and broadcasts the piv-
ots to the ntherp - 1 processors.

3. Localpartitioning. Each processor uses binaty
scarch on its local sorted list to partition it into
p subsequences using the pivots received tiom
Step 2. Then thejth subsequence is scnt to I;.
I.ocal merging. Rach processor inergcs the 11
sorted subsequences rcccived to produce the
ith colntnn of the sortcd array.

2.

4.

Our randomized sampling algorithm runs in

O((n log n)/p) with high probability, using only
two rounds of balanced communication and a
broadcast ofp - I clcinents from one processor
to thc rcniaining proccssors.‘

Applications to computational
geometry

Compntational geometry is the snldy of de-
signing efficicnt algorithms for computational
problems dealing with objects in Euclidean
spacc. This rich class of prohleins arises in inany
applications, such as computer graphics, con -
puter-aided dcsign, robotics, pattern rccogni-
tion, and statistics. Randomization techniqucs
play an important role in computational geome-
try, and most of these techniqucs can be viewcd
as higher-dinicnsional gencralizations nf Quick-
sort.‘ We’ll look at the simplest example of such
techniques, which is also rclated to the sample
sorting procedurc I just describcd.

Let N b c a set of points on the real line K such
that I NI = n. Sorting then points ainouiits to
partitioning R into n + 1 regions, cach defincd
hy an (open) intcrvsl. Let S be a random point
of N that divides R intn two halves. Lct NI and
N2 hc the subsets ofNcontaincd in these halves.
Then, we cxpect the sizcs of NI and N2 to be
roughly eqnal. As in the Quicksort algorithm,
wc can sort Nl and N2 recursii.ely.

As a gencrali7,ation, Ict S be a random sample
of N of sizc s. One way to constrnct S is to
choose the first element of S randomly from N
and dclete it from N. Continue thc process, cach
time sclccting a random element from the re-
maining set N and deleting it from N, until we
have I eleniciits in our set S. Such a procedure is
called samiiling without replace?ncnt.

Docs S divide thc real line R into regions of
roughly eqnal size? As I stated earlier, the parti-
tion is defincd by the sct of open intervals. The
coy% .size of any such interval I is the number
of points ofNand I , hut not in S. We would like
to dctcrmine whethcr each interval’s conflict size
is O(n/s) with high probability. Unfortunately,
wc can only show a weaker rcsult-namely, that
with probability greater than 1/2, cach interval’s
conflict sizc is O((n log.s)/s).

Wc can apply thc same random sampling tech-
nique to thc case where Ni s a set of lines in the
plane. A random sample S generates an arrange-
ment (that is, thc convex rcgions in thc plane in-
duced by the lines in s). The conflict size is thc
nuinhcr of lines in N, but not in S, that intersect
a region of the arrangement of S. If we refine the

48 COMPUTING IN SCIENCE & ENGINEERING

arrangeincnt of S so that each region has a
bounded nunihcr of sides, thcn with high proh-
ability, the conflict size of every rcgion is indccd

These two simple gcneralizatioiis of the raii-
domized Quicksort can hc used to devclop effi-
cient algorithms for various problcms in con-
putational geomctry?

O((n logs)/s).

he hasic strategy of Quicksort-ran-
domized divide-and-conquer-repre-
sents a futidameiital approach for tle- T signing cfficient conihinatorial algo-

rithms that will rcniain a sonrce of inspiration for
rcsearchers for inauy years to come. Iu particular,
the full potential of the technique in haudling
higher-dimensional problems in computational
geometry and in developing p a d e l algorithms for
combinatorial problems is yct tn he fi~lly exploited.
In the fiimrc, we can anticipate vigorous research
progess along thesc directions. %

References
1 . C.A.R. Hoare, ''Quicksort,'' TheCamputeii., Voi. 5, No. 1, Apr.

2. D. Helman, D. Bader, and I. lala, "A Randomized Parallel Sorting
Algorithm with an Experimental Study," 1. Parollel and Dirtrib-
utedComputiny.Vol.52,No. 1, lOluiy1998,pp.l-23.

3. D.E. Knuth, TheArtof CooiputerPr44io"ins,y~~mml~y, Vol. 3 Sortinyand
Seoichlny, Addiron~Werley, Reading, Mass., 1973.

4. R. Sedgewick, "Implementing Quicksort Programs," Comm.
ACM,Vol.Zl, No. 10, Oct. 1978, pp. 847-857.

5. M. Ben-Or, "Lower Bounds for Algebraic Computation Trees,"
Prai 15th Ann. ACM Symp. TheoryafComputiny, ACM Pres, New
York, 1983, pp. 80-86.

6. P. Raghaven, lecture Notes on Randomized Alyorlthmr, tech. re-
port, IBM Research Division, Yorktown Heightr, N.Y., 1990.

1. W. Frazer and A. Mckellar, "Samplesort: A Sampiing Approach
to Minimal Storage Tree Sorting," 1. ACM, Vol. 17, No. 3, July

8. C. Blelloch et al., "A Comparison of Sorting Algorithms for the
Connection Machine CM-2." Proc. ACM Symp. Parallel Alyorithmr
and Architectures, ACM Press, NewYork, 1991, pp. 3-16.

9. K. Mulmuiey, Camputatioml Geometry An Introduction through
Rondomized Algorithms, Prentice Hall, Upper Saddle River, N.I.,
1994.

1962, pp. in-is.

19711, pp. 496.~117.

Joseph JaJa is the director of the University of Mary-
land Institute of Advanced Computed Studies and a
professor of electrical engineering at the university. His
research interests are in parallel and distributed com-
puting, combinatorial optimization, and earth-science
applications. He received his MS and PhD in applied
mathematics from Harvard University. He is a fellow of
the IEEE. Contact him a t the Inst. for Advanced Com-
puter Studies, A.V. Williams Bldg., Univ. of Maryland,
College Park, MD 20742; joseph@umiacs.umd.edu;
www.umiacs.umd.edu/-joseph.

