
A PERSPECTIVE ON QUICKSORT 
This article introduces the basic Quicksort algorithm and gives a flavor of the richness of its 
complexity analysis. The author also provides a glimpse of some of its generalizations to 
parallel algorithms and computational geometry. 

S orting is arguably the most studied prob- 
lem in computer science, because of both 
its usc in many applications and its in- 
trinsic theoretical importancc. The  basic 

sorting problem is the process of rearranging a 
given collection of items into ascendiiig or de- 
scending order. The  items can he arbitrary oh- 
jccts with a lincar ordering. For example, the 
items in a typical business data-processing all- 
plication are records, each containing a special 
identifier field called a key, and tlic records must 
he sorted according to their keys. Sorting can 
greatly simplify searching for or updating a 
record. This article focnses only on the case 
whcrc all the items to be sorted fit in a machine’s 
main memory Otherwise, tlic main objective of 
sorting, rcfcrred to as extemdsorting, is to min- 
imize the amount of 110 communication, an is- 
sue this article docs not address. 

Although researchers have developed and an- 
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alyzed many sorting algorithms, the Quicksort 
algorithm stands out. This article shows why. 

Staying power 
Tony Hoare presented the original algorithm 

and several of its variations in 1962,‘ yet Quick- 
snrt is still the hcst-known practical sorting al- 
gorithm. This is quite surprising, given the 
amount of research donc to develop faster sort- 
ing algorithm during the last 38 years or so. 
Quicksort remains the sorting routine of choice 
except when we have more detailed information 
about the input, in which case other algorithms 
could outperform Quicksort. 

Another special featlire of the algorithm is the 
richness of its complexity analysis and svuchlre, 
a feature that has itispired the development of 
many algorithmic techniques for various combi- 
natorial applications. Although the worst-case 
complexity of Quicksort is poor, we can rigor- 
ously prove that its average complexity is quite 
good. In fact, Quicksort’s average complexity is 
the hest possible under certain general complex- 
ity models for sorting. More concretely, Quick- 
sort perforins poorly for almost sorted inputs but 
extremely well for almost random inputs. 

IANUARY/FE~RUARY 2000 43 



In retrospective, Qnicksort follows the divide- 
and-conquer stratcgy (likely one of the oldest 
military stratcgies!), one of the most powerful 
algorithniic paradigms for designing efficient al- 
gorithms for combinatorial problems. In partic- 
ular, a variation nf Quicksort, which IIoare also 
mentioncd in his original paper, is based on a 
randomization step wing a random-number 
generator. 

Researchers cultivated this idea years later and 
significantly enriched thc class of randvniized al- 

than the pivot and no clenicnt in tlie right 
subarray is smaller than the pivot. 
Recursively sort thc lcft and the right sub- 3. 
arrdys. 

Ignoring the iinplemeiitation details for now, 
it is intuitively clear that tlie previous algorithm 
will cnrrcctly sort the elements of A. Equally 
clcar is that the algorithm follows the tlividc- 
and-conquer strategy. In this case, Stcps 1 and 2 
correspond to thc partitioning phase. Step 3 

, .  

uicksort computer science. Yon could 
argue that thcse developincuts 
arc somewhat indcpendeiit of 
Quicksort, hut niany of thc 
randomized combinatorial al- 
gorithms arc based on thc 

ts  far samc randomized divide-and- 
conquer strategy described in 
IIoare’s original paper. Indeed, 
many randoniized algorithms 
in computational geometry 
can hc viewed as variatinns of 

Finally, a generalization of 
the randoinizcd version of the Quicksort algo- 
rithm results in a parallel sample-sorting strateLy, 
the best-known strategy for sorting on parallel 
machines, both from a theoretical pcrspective and 
from extcnsive experinicntal studies.’ 

m the 

3 Quicksort. 

The basic algorithm 
T h e  ilivide-and-coiiqucr strategy has three 

phases. First, divide the prohlem into several suh- 
problems (typically two for sequential algorithms 
and more for parallcl algorithms) of almost eqnal 
sizes. Second, solve iiidependcntly the resulting 
snhproblems. Third, merge the solutions of the 
subproblems into a solution for the original 
problem. This strategyh effcienLy depends on 
finding efficient prvcednres to partition the prob- 
lem during tlie initial phasc and to merge thc so- 
lutions during the last phasc. For example, the 
fast h’nuricr transform follows this strategy, as 
does Quicksort. IIere is a high-lcvcl description 
of Quicksort applicd to an arrayA[O : 72 - I]: 

1. 

2. 

Select a n  clcmcnt kom A10 : n ~ 11 to be tlie 
pivot. 
Kearrange the elements iifA to partitionA 
into a left subarray and a right sntmray, such 
that no element in thc lcft subarray is largcr 

ing a merging phase nnnccessary. 
Two crucial iniplenient&on issms arc missing 

from onr initial description of the Quicksort alga- 
rithm. The first concerns the inethod for selecting 
the pivnt. ’I’hc second concerns the method for 
partitioning the input once the pivot is selected. 

Selecting the pivot 
Because a critical assinnption for an efficient 

divide-atid-conquer algorithm is to partition the 
input into ahnost equal-sizc picccs, we should sc- 
lcct the pivot so as to induce almost cqual-size 
partitions of the array A. Assuming A cnntains n 
disunct cleinents, the bcst choice would he to sc- 
lect thc nicdian ofA as thc pivot. Although some 
good theoretical algorithms can find thc median 
without first sorting the a r r q  they all incur too 
much overhead to be iisefiil for a practical imple- 
mentation of Quicksort. 

In reality, there are three basic methods tn sc- 
lect the pivot. T h e  first and simplest i s  to select 
an element from a fixed psi t ion ofA, typically 
the first, as the pivot. In gcneral, this choice of 
the pivot does not work well unless the input is 
random. If tlie input is almost sorted, the input 
will be partitioned extremely unevenly during 
each iteration, resulting in a vcry poor perfnr- 
inaiice of the overall algorithm. ‘Ihc second 
method for sclecting the pivot is to try to ap- 
proxiinate the median ofA by computing the 
median of a small subset ofA. 

One conimonly used method is to select the 
pivot to hc the median nf thc first, the middlc, 
and the last cleinents ofA. Such a method works 
wcll, even though we may still end up with very 
uneven partitions dnring each iteration for cer- 
tain inputs. Finally, wc can randomly sclcct a n  
clciiient from A to be the pivot hy using a ran- 
dim-nuinher gencrator. In this case, we can rig- 
orously prnvc that each step will result in an al- 
most even partition with very high probability, 
regsnllcss of tlie initial input distributinn. 
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Partitioning the input 
Because the algorithm is recursive, I describe a 

simplc partitioning procedure for a general sub- 
arrayA[/, r],  where / <  r. The procediire manip- 
ulatcs two pointcrs i andj, where i movcs kom 
left to right starting a t  position 1, a n d j  moves 
from right to left starting at position r. T h e  
pointer i is cuntinually incremented until a n  cl- 
ementA[i] larger than the pivot is cncoiintercd. 
Similarly,j is decremented nntil a n  element A)] 
smaller than the pivot is cncouutered. At that 
time, A[i] arid AV] are exchanged, and the 
process continncs until the two pointers cross 
each other, which indicates the completion of 
the partitioning phasc. More precisely, F i p r c  1 
gives the following pseudocode Iiroccdnre for 
partitioningA[/, r], where all the elements ofA 
arc assmncd to bc distinct, and the left-most el- 
ement is chusen as the pivot, 

'The partition procedure starts by initializing 
tlic pointers i a n d j  and selecting the left-most 
element to be the pivot. Note tha t j  is initially 
set to the value T +  1 so that the while loop for 
j in Step 2 will start by examining tlic snharray's 
right-most clcmcnt. The  last two assignments in 
Step 2 ensure that  the pivot is placed in its cor- 
rect position in the final sorted order of A. T h e  
partition procedure takes linear time with a very 
small constant factor. Donald IGiuthj attributes 
this particular partitioning procedure to Robert 
Sedgewick.4 

Quicksort initially calls the partition proce- 
dure with the values I = 0 and 7 = n - 1, lollowed 
by reciirsive calls to handlc tlic subarrays /Ill, 
j - 11 and A[j + 1, 4. We can eliminate the re- 
cursive calls by using a stack to kccp track uf tlic 
partitions yet to be sorted. We run Quicksort 
nntil tlie number of clcments in tlie subarray is 
small (say, fewcr than 30); thcn wc iisc a simplcr 
sorting proccdurc, such as insertion surt. 

Complexity analysis 
We can nse several measures to analyze a sort- 

ing algorithm's performance. We can count the 
number of comparisons the algorithm makes, be- 
cause comparisons seem to bc thc major opera- 
tions performed by any general surting algorithm. 
Another important paratneter is the number of  
swaps the algorithm incurs. Yet another measure, 
one that is perhaps more relevant for todayh 
processors and their use of memory hierarchies 
(typically two levels of cache and main memory), 
is the data movement and its spatial locality Here, 
I concentrate on the iiumher of comparisons, for 

procedure partitiOn(A, 1, U) 

begin 

Step 1. Set i = 1; j r + 1; pivot A[ll; 

Step 2. while(true) ( 
while(A[++il < pivot); 
while(A[--jl > pivot); 
if i < j then exchange d[il and A[jl; 

else break; 
1 

A[ll = A[jl; 
A[jl = pivot; 

end procedure 

Figure 1. The partitioning procedure for A[/, r] 

which there are well-known inodcls (for example, 
algebraic decision trccs5) that can derive nonlinear 
lowcr bounds for sorting. 

Worst-case analysis 
In general, an algorithm!? most commonly 

uscd pcrforinancc metric is the asyniptotic esti- 
mate of the insximum amount of resources (for 
example, the number of operations, the number 
of mcmory accesses, and memory size) required 
by any instance of a problcm of s i x  n. In sort- 
ing, we determine the asymptotic number of 
comparisons required in the worst case. Let T(n) 
be tlic numbcr of comparisons required by oiir 
Quicksort algorithm, wing any of the methods 
just described for selecting the pivot. 'l'hcn the 
following recurrence equations express T(n): 

~ ( n ) =  inax {T(i)+T(n-i)}+cn 

T(I)= @,(I) 
IKiYi-1 

where 02 is an upper bound on the tiine required 
to partition the input. T h e  parameter i is the size 
of thc left partition rcsulting after the first itera- 
tion. Because we are focusing on the worst-casc 
sccnario, we take tlic maximum uver all possible 
values of i. It is intuitively clear that the worst 
case occurs when i = 1 (or equivalently, i = n - I), 
which can happen for each of our three pivot- 
selection methods. Therefore, T(n) = @@*), 
which is inferior to the worst-case complexity of 
several of the other known sorting algorithms. 
IIowcver, what makes Quicksort so interesting 
from the complexity-analysis point ofvicw is its 
far superior average complexity. 
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Average-case analysis 
Although performing a worst-case analysis on 

an algorithm is usually casy, it often resiilts in a 
very pessinustic pcrformancc cstiinate. TGiown al- 
tcrnative performance iiicasnres seem more use- 
ful, hut deriving their asymptotic behavior is sig- 
nificantly tnorc difficult. One siich measure is to 
estahlish the average coiiiplexity ondcr a certain 
probability distribution of the input. Not only is 
deriving such a bound difficult, hut also this ai>- 
proach Gails to offer adequate ways for defining the 
probability diswibution of die input in most cases. 

An altcriiative approach is to Ict the algorithm 
me a random-numher gcnerator (such as our 
third method for randomly sclccting thc pivot 
from tlic input array). In this case, a probabilistic 
analysis of tlic algorithm docs not require any as- 
sumptions about the input distribution, and hence 
holds for any input distribution. This approach 
gives rise to the so-called mndomizerl nlgnrithms. 

IIcre, T consider die case whcn the array's first 
elenient is sclccted as tlic pivot and assuiie raii- 
dom input. So, tbc pivot is equally likely to bc 
of any rank between 1 atid n. 'l'hereforc, the av- 
erage complexity is givcn by thc recurrence 
equations, 

T(I)=O(l) 

The first equation is equivalent to 

Moltiplyiug both sides by n gives 

Subtracting tlic recurrence equation corre- 
sponding to n - I from the one corrcsponding 
ton,  we get 

n T ( n ) ~ ( i z - 1 ) T ( 1 2 - 1 ) = 2 ~ ~ n - 1 ) + 2 c n - c ,  

Rearranging the t e r m  and dropping c (it is 
asymptotically irrclevant) gives 

nT(7z) = ( n  + l)T(n ~ 1) + 2'7l 

Dividing hoth sides by n(n + 1) givcs 

T(rr) l (n- I )  2c +--' _ -  -__ 
n + l  n n + l  

In particular, we havc this sequence of equations: 

' / '(a) T(n-1)  2r 
71tl n n c l  
' l ' ( n - I )  T(n-2)  2' 

71 - 1 12 

- t- 

_ _ - ~  - +-  

T(2) '/'(I) 2c 
3 - z ' i  

Adding the above cquations and considering that 

wherc y =  0.577 is Eulcr's constant, wc find that 
T(n) = O(n log n). 

Under a fairly general model for sorting that 
cven allows algebraic operations,' no algorithm 
can beat this bound. This analysis forinally jus- 
tifies the superior pcrforinance of Quicksort in 
niost practical sitiiatioos. 

Analysis of randomized Quicksort 
Consider the case where the pivot is randomly 

sclccted from tlic input array. With bigh proba- 
bility-that is, with probability I - nP for some 
positive constant c-the resulting Quicksort al- 
gorithm's complcxity is O(n log n), regardless of 
the initial input distrihution. 

Our strategy is as follows. We vicw the Quick- 
sort algorithm as a sequence of iterations such 
that tlic first iteration partitions the input into 
two hnckets, the second iteration partitions the 
previous two buckets into four buckets, and so 
on, until each huckct is small enough (say, 5 30 
eletncnts). We then use insertion sort to sort 
these Iiuckcts. Another way of looking at  this is 
to unfold the recursion into a tree of partitions, 
whew each level of the tree corresponds to an 
iteration's partitions. Partitioning the huckcts 
during cach iteration takes a deterministic O(n) 
time. So, our goal is to show that the nurnbcr of 
iterations is O(log n) with Iiigh probability. 

For any specific clement e, the sizcs of m y  two 
consccutive buckets containing e decrease by a 
constant hctor with a certain probability (Claim 
1). Then, with probability 1 - O(n-'), tbc bucket 
containing e will be of size 30 or less after O(log 
n) iterations (Claim 2). Using noole's inequality, 
we conclude that, with probability 1 - O(n-'), die 
bucket of every clement has 5 30 clcnients after 
O(1og n) iterations.6 

Let e be an arhitraiy elctncnt of our input array 
A. Lct 75 be the sizc of the bnckct containing e at 
the end of thcjtli partitioning step, whcrej t 1. 
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We set no = n. 'Ihen, this claini holds: 

Claim 1.  Pr(n,+, > 7ni/8) < 1 /4, lor any j 2 0. 

Proof. An element n partitions tlie.jtli bucket 
into two buckets, one of size at least 7n,/8 if and 
only if rank(a : b;) 5 nj/8 or rmk(n : E;) 2 7 9 .  
T h e  probability that a random clcincnt is among 
the smallest or largest n;/8 elenients of Ej is a t  
most 1/4; hence, Claim 1 follows. 

We fix the element e ofA, and we consider the 
sizes of the huckets containing E during vasious 
partitioning steps. We call thejth partitioning 
step succcssful if n; < 7ni_,/8. Because nlI = n, thc 
size of the bucket contaiiiiug e after k successful 
partitioning steps is smaller than (7/8)kn. Tlicre- 
fore, e can participate in at nos t  c log(n/30) suc- 
cessful partitioning steps, where c = l/log(S/7). 
For the remainder of this proof, all logarithms 
are to the base 8/7; so die constant c is equal to 1. 

Claim 2. Among 20 log n partitioning steps, the 
probability that an  element egoes through 20 
log n - log(n/30) unsuccessful partitioning steps is 
0(~-7). 

Proof. The random choices made at  various par- 
titioning steps are indcpcndenc therefore, the 
events that colistihitc thc successful partitioning 
steps are independent. So, wc can model these 
events as Bt!i*noulli triak. Let X he a random vari- 
able denoting the iininhcr of unsnccessf~il parti- 
tioning steps among the 20 log n s t e p  Therefore, 

Given that 

we obtain that our probahility is 

So, we have proven that the algoritlnn takes 
O(n log n) time with high prohahility. 

Extension to parallel processing 
For our pmposcs, a parallel niacliinc is simply a 

cdlection of processors interconuectcd to allow 
tlie coordination of their activities and the 
exchange of data. Two types of parallel machines 
airrently donunate. The  first is symmetric multi- 
processors (SMPs), which are tlie main choice 
for the hieh-end server . , 1 _  

Y 

market, and soon will he 
on most desktop con-  
ptcr5. Tlic \ccotid type 
clusters high-end pro- 
cessors through pro- 
prietary interconnect 
(for example, the TRM 
SP IIigli-Performance 

name s$ip/e sort. 
Switch) or through off- 
the-shelf interconnect 
(the KTM switch, giga- 
bit Ethernet, and so onj. 

varioiis resources on the parallel machine to 
speed iip the execution time. In addition to dis- 
tributing the load almost evenly among the vm- 

ors, a good parallel algorithm should 
minimize the coiiiinunicatioii and coordination 
among the different processors. Parallel algo- 
rithms often perform poorly (and sometimes ex- 
ecution time increases with the number of 
processors) primarily because of the ainoiint of 
connnnnication and coordination required he- 
tween the different processors. 

Quicksort's strategy lciids itsclfwell to parallel 
machines, resulting in sample sorting: 

1. 

2.  

A parallel sorting algorithm tries 

Sclectp - 1 pivots, whcrcp is tlie nuinher of 
processors available. 
Partition the input array inti, p suharrays, 
such that every clement in the ith subarray is 
smaller than each element in the (i + 1)th 

< y /20elognj'/lj/= y (5elugnj' suharrav. 
b - 

j>i&,,( .i (4 )  i> ig iOcn\  j 3. Solve tl;e problem by getting the ith proces- 
sor to sort the ith su1)array. 

Selogn 

One way to choose the pivots is by randimily 
Therefore, Claim 2 follows. 

By Bode's inequality, the probability that one 
or more clctnents of A go through 20 log n - 
log(n/30) unsuccessfiil s t e p  is a t  most O(n x n-7) 
= O(n-')). Thus, with prohahility 1 - O(n-'j, the 
algorithm terminates within 2 0  log n iterations. 

sainpling the input elements-hetice, the name 
.snnzple SOW (A generalization of the buclcct- 
sorting method, also called sample sort, involves 
sampling as welL7) As in the sequential case, the 
algorithm's efficiency depends on how the piv- 
ots are selected and on thc method used to par- 
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tition the inpnt into thep partitions. 
Before addressing these issncs, letk definc our 

problem morc precisely We havc n distinct cle- 
nients that are distributed evenly among thc p 
processors of a parallel machine, where we as- 
siinic that p divides n cvenly. The  pnrposc of 
sorting is to rearrange the elcments so that the 
smallest n /p  elcments appear in ptnccssor PI in 
sorted ordcr, the second smallest n/p elemcnts 
appear in processor P2 in sorted order, and so on. 

hsiniplc way to realize the sample sorting strat- 
cgy is to havc each proccssor choosc s samples from 
its n/p input elemcnts (In thc next section, I’ll show 
yon one way to do this.), ronte thcps samples into a 
single prqcessor, sort the samples on that processor, 
and selcct evety sth element as a pivnt.8 Fich 
processor partitions its inpnt elcnicnts into p 
groups using thc pivots. Thcn, the first gronp in 
each processor is sent to PI ,  the second to P2, and 
so on. Finally, we sort the overall input by soidng 
the elements in each processor separately. 

The first difficulty with this approach is the work 
involved in gathering and sorting the samples. A 
larger value of A. iniprnvcs load balancing hut in- 
creases overhead. The second difficulty is that the 
communication required for routing thc elements 
to the appropriate proccssors can hc cxtreniely in- 
efficient hecausc of large variations in thc number 
of eleincnts destincd for differcnt processors. 

Considcr a variation that scalcs optimally with 
high prohahility and has performed cxtreniely 
well on several distrihnted-ineiiiory parallel ma- 
chines using various benchmarks.2 Here are the 
algorithm’s steps: 

1. Randomization. Each processor Pi (1 I i S p )  
randomly assigns each of its n/p elcinents tn 
one ofp huckets. With high protiahility, no 
bnckct will reccivc more than c1(n/p2) elc- 
ments for some constant cI.  Each processor 
then riiutcs the contcnts of hockctj to 13. 
Local sorting. Each prnccssor sorts thc ele- 
ments receivcd in Step 1. Thc first proccssor 
thcn selects p - 1 pivots that partition its 
sorted snhlist evenly and broadcasts the piv- 
ots to the ntherp - 1 processors. 

3. Localpartitioning. Each processor uses binaty 
scarch on its local sorted list to partition it into 
p subsequences using the pivots received tiom 
Step 2. Then thejth subsequence is scnt to I;. 
I.ocal merging. Rach processor inergcs the 11 
sorted subsequences rcccived to produce the 
ith colntnn of the sortcd array. 

2.  

4. 

Our randomized sampling algorithm runs in 

O((n log n)/p) with high probability, using only 
two rounds of balanced communication and a 
broadcast ofp - I clcinents from one processor 
to thc rcniaining proccssors.‘ 

Applications to computational 
geometry 

Compntational geometry is the snldy of de- 
signing efficicnt algorithms for computational 
problems dealing with objects in Euclidean 
spacc. This rich class of prohleins arises in inany 
applications, such as computer graphics, con -  
puter-aided dcsign, robotics, pattern rccogni- 
tion, and statistics. Randomization techniqucs 
play an important role in computational geome- 
try, and most of these techniqucs can be viewcd 
as higher-dinicnsional gencralizations nf Quick- 
sort.‘ We’ll look at the simplest example of such 
techniques, which is also rclated to the sample 
sorting procedurc I just describcd. 

Let N b c  a set of points on the real line K such 
that I NI = n. Sorting then  points ainouiits to 
partitioning R into n + 1 regions, cach defincd 
hy an (open) intcrvsl. Let S be a random point 
of N that divides R intn two halves. Lct NI and 
N2 hc the subsets ofNcontaincd in these halves. 
Then, we cxpect the sizcs of NI and N2 to be 
roughly eqnal. As in the Quicksort algorithm, 
wc can sort Nl and N2 recursii.ely. 

As a gencrali7,ation, Ict S be a random sample 
of N of sizc s. One way to constrnct S is to 
choose the first element of S randomly from N 
and dclete it from N. Continue thc process, cach 
time sclccting a random element from the re- 
maining set N and deleting it from N, until we 
have I eleniciits in our set S. Such a procedure is 
called samiiling without replace?ncnt. 

Docs S divide thc real line R into regions of 
roughly eqnal size? As I stated earlier, the parti- 
tion is defincd by the sct of open intervals. The  
coy% .size of any such interval I is the number 
of points ofNand I ,  hut not in S. We would like 
to dctcrmine whethcr each interval’s conflict size 
is O(n/s) with high probability. Unfortunately, 
wc can only show a weaker rcsult-namely, that 
with probability greater than 1/2, cach interval’s 
conflict sizc is O((n log.s)/s). 

Wc can apply thc same random sampling tech- 
nique to thc case where Ni s  a set of lines in the 
plane. A random sample S generates an arrange- 
ment (that is, thc convex rcgions in thc plane in- 
duced by the lines in s). The conflict size is thc 
nuinhcr of lines in N, but not in S, that intersect 
a region of the arrangement of S. If we refine the 
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arrangeincnt of S so that each region has a 
bounded nunihcr of sides, thcn with high proh- 
ability, the conflict size of every rcgion is indccd 

These two simple gcneralizatioiis of the raii- 
domized Quicksort can hc used to devclop effi- 
cient algorithms for various problcms in con-  
putational geomctry? 

O((n logs)/s). 

he hasic strategy of Quicksort-ran- 
domized divide-and-conquer-repre- 
sents a futidameiital approach for tle- T signing cfficient conihinatorial algo- 

rithms that will rcniain a sonrce of inspiration for 
rcsearchers for inauy years to come. Iu particular, 
the full potential of the technique in haudling 
higher-dimensional problems in computational 
geometry and in developing p a d e l  algorithms for 
combinatorial problems is yct tn he fi~lly exploited. 
In the fiimrc, we can anticipate vigorous research 
progess along thesc directions. % 
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