
Introduction to High Performance Computing

Problem Set #4

This problem set is built upon Problem Set #2, in which you solved a linear algebraic system arising
from the discretization of Poisson’s Equation, a second-order PDE based on the Laplacian operator, on a
structured grid in two dimensions.

Begin this problem set with a review of the previous one and of the PETSc lecture slides (Unit 5)
which originate from the 2016 Argonne Training Program in Extreme Scale Computing. (The video of
PETSc training at ATPESC’16 is now available on-line if you prefer to take the PETSc short course with
its developers.)

You are now a revolution higher on the “spiral” of integrated HPC study. This and the remaining problem
sets will specialize on the Newton-Krylov family of solvers on structured grids, Unit 6 or earlier. We will mix
in a variety of Krylov methods and preconditioning methods, and we will add multigrid as a preconditioner
in order to scale. In this problem set, you will play with the number of independent variables (considering
also one-dimensional and three-dimensional problems). In future problem sets, we will generalize from linear
to nonlinear. We will also generalize from one to several dependent variables (systems of PDEs). And we
will be nudged into the setting of multiple physical parameters and do a little modeling.

In Problem Set #2, you solved a 2D PDE discretized as finely as 256 × 256 on a local workstation. In
this problem set, you solve the same Poisson problem on finer resolutions in parallel and on many cores,
while exploring a broad range of linear solvers and precondtioners provided by PETSc.

ps4.c, provided with this assignment, is a file containing the main program and call-back subroutines
of a parallel C code that uses PETSc to solve the Poisson equation of Problem Set #2. The code is almost
the same as the ps2.c code, with minor improvements. The difference in this assignment is the computer.

You have been provided with an access to either Blue Waters at UIUC or Shaheen at KAUST, on
which to try these exercises. Both systems are of Cray architecture, and they run almost the same software
stacks provided by Cray. Blue Waters is based on AMD processors and Shaheen on Intel, but their internal
differences are not significant, since we use both systems in all-MPI distributed memory mode in these
PETSc exercises. (In practice, many users employ hybrid programming models on these systems by using
a shared memory programming model, such as OpenMP, inside of an MPI-based message passing model.)
Unlike the exercises on your workstation, you do not need to install PETSc. We recommend using the Cray
version of PETSc that is already installed on both systems. It is usually a version behind what you can
pull from Argonne; however, you do not need any extra features that are available on in newer releases for
these exercises. You will want to consult the online PETSc manual pages to see how to invoke some of
the standard algorithmic options you need. A separate one-page document that is available for distribution
along with this problem set describes how to use one system or the other, with a sample job script to help
you getting started running jobs in distributed memory.

1) 2D Poisson’s Equation on a distributed memory system in the SPMD programming model

Refine the initial 17×17 grid created by default in ps4.c 6 times (use -da refine 6) to create a 1025×1025
Poisson problem (a million unknowns is not considered a large problem in 2016). Using the provided batch
script (see details in the Blue Waters or Shaheen supplement), execute the code with 64 MPI processes
that are compactly allocated across the available compute cores of each allocated node. For instance, for a
dual-socket node with 16 cores per socket, assign 32 MPI ranks per node (16 ranks for each socket), and
allocate only 2 compute nodes of the Cray system.

[Note: In this problem set, and in this course, we keep the number of requested compute nodes as small as
possible by allocating as many cores per node as possible. There are two reasons for this. Batch reservation
systems generally favor job requiring fewer compute nodes, ahead of those requiring more, so your job will
be scheduled for execution with the smallest delay. In addition, the charging algorithm on most parallel
systems charges for the time that nodes are allocated, independent of the number of cores employed per
node, so it is usually most cost effective to use all of the cores. If you needed more memory per core, you
could use fewer cores per node and allocate more nodes, leaving many of the cores idle on each node, but
our exercises are not memory hogs.]

(a) Baseline: default PETSc KSP and PC settings

1. What are the default KSP options of PETSc? Recall the -ksp view execution-time switch you used
in Problem Set #2. What are the key differences between the default PETSc options of KSP in
sequential and in parallel? Explain these options and their functionalities in the context of parallel
processing.

2. With the default KSP options, does the KSP converge or diverge? How many KSP iterations are
performed?

3. What is the maximum norm of the overall error (||ϕ− ϕ̂||∞)?

4. Turn on the appropriate monitoring and report the overall runtime, the effective computational rate,
and the message-passing activity.

Is the default Krylov and preconditioner combination the best combination one can recommend? Recall
that the linear system is symmetric and positive definite. Do the default settings of PETSc KSP and PC
exploit this structure? The next exercises are intended to tune the PETSc KSP and PC parameters.

(b) PETSc linear solvers and preconditioners

1. With the Generalized Minimal Residual (GMRES) method as the Krylov solver, and perform the
following experiments:

• Try first GMRES without preconditioning; then try GMRES with block Jacobi as a domain-
decomposed preconditioner and Incomplete LU (ILU) on the subdomains.

• Use the default restart size for the Krylov subspace (30 vectors) at first; then try fewer (15), then
greater (60), and finally use 200 vectors. Using the largest subspace should lead to the fewest
iterations, but is the execution time proportional to the number of iterations? Reason why or
why not.

• With additive Schwarz domain-decomposed preconditioning with ILU[0] as a subdomain precon-
ditioner; try different Schwarz overlap levels: 0 (no overlap) and 3. Again, which is better in
iteration count, and is the reduction in execution time proportional? Reason why or why not?

• Use the default ILU level of fill (ILU[0]) at first; then try two higher levels of fill: level 1 and 3.
Higher fill should lead to fewer iterations, but is the execution time proportional to the number
of iterations? Is there a point of diminishing returns on execution time? Reason why or why
not.

• Try varying subdomain overlap and ILU fill level to find the best pair in terms of execution time.

• Try one KSP accelerator besides GMRES, such as BiCG-Stabilized? Do your observations and
parameter choices hold?

2. Since the matrix is symmetric and positive definite, use the Conjugate Gradient (CG) method as the
Krylov solver, and perform the following experiments:

• Try first CG without preconditioning; then try CG with Jacobi as a domain-decomposed pre-
conditioner and Incomplete Cholesky (ICC) on the subdomains.

• Set a tight relative convergence tolerance for CG and report on the shape of the curve of the
residual as a function of iteration count. The matrix two-norm of the error of CG has to be
monotonically decreasing (recall the theorem on slide 56 of Unit 4, Part 1). Is the residual
norm?

• With additive Schwarz domain-decomposed preconditioning with ICC[0] as a subdomain precon-
ditioner; try different Schwarz overlap levels: 0 (no overlap) and 3. Again, which is better in
iteration count, and is the reduction in execution time proportional? Do any of your recommen-
dations based on GMRES experience change?

• Use the default ICC level of fill (ICC[0]) at first; then try higher fill of level 1 and 3. Again, is
there a point of diminishing returns?

• Do other Krylov methods for symmetric systems, such as SYMMLQ, offer any advantages?

3. Use a direct method for preconditioning, and set Krylov to apply the preconditioner only. Perform
the following experiments.

• Try LU factorization direct solver, as a preconditioner; then vary the matrix ordering techniques:
1) Nested Dissection, 2) Reverse Cuthill-Mckee.

• Try Cholesky factorization direct solver, as a preconditioner; then vary the matrix ordering
techniques: 1) Nested Dissection, 2) Reverse Cuthill-Mckee.

Tabulate the following five performance characteristics for each parametrically defined method: 1) num-
ber of linear iterations, 2) error norm, 3) overall runtime, 4) computational rate, and 5) message-passing
activity. Document the set of command lines you used. Compare your results with the baseline model you
developed initially. Explain your overall performance results and how do you interpret them.

2) Preconditioned vs. unpreconditioned CG

Compare the performance of unpreconditioned and Jacobi-preconditioned CG, by refining the initial grid 0,
2, 4, and 6 times. Explain how that ICC[0] preconditioning gives lower iteration counts but the same scaling
in h. [Note: You may need to adjust the number of MPI processes based upon the grid size, so that you do
not get an MPI error because of the grid is too coarse to distribute across the cores. For example, in the
case of 0 do not run 64 MPI processes, where you have only 16 points in each grid direction.]

3) Multigrid as a preconditioner
Lectures on multigrid as a solver and preconditioner will follow, but you can play with the methods now

without effort. Once you have been amazed by multigrid, you will be motivated to understand its analysis.

(a) Algebraic and Geometric Multigrid
Use the same settings as the previous question with Conjugate Gradient (CG) iterative method as a

Krylov solve. Perform the following experiments.

1. Use PETSc implementation of the Algebraic Multigrid as a preconditioner inside CG with the default
settings.

2. Reduce the default number of levels of multigrid to 2, 4, and 12.

3. Set the number of multigrid levels to 3, and at each of the different levels change the inner Krylov
solver and the preconditioner to one of your choice. [Note: This means that you should have 3 different
Krylov solvers and 3 different preconditioners, one for each level.]

4. Set the cycle type of multigrid to the W cycle.

5. Change the default multigrid type to additive and then full.

6. Try Galerkin process to compute the coarse operators.

7. Use PETSc implementation of the Geometric Multigrid as a preconditioner inside CG with the default
settings.

8. Try the Hypre implementation of the Algebraic Multigrid (BoomerAMG) with the default settings.
[Note: Hypre is an external package implemented by Lawrence Livermore National Laboratory (LLNL)
and it is not part of PETSc package. However, since this problem set is carried out on either Shaheen
or Blue Waters systems, the PETSc installation of Cray on these two systems includes Hypre and
it automatically links to the library when you compiler a PETSc code. You can always configure
your own PETSc installation with Hypre package by simply adding --download-hypre option to the
PETSc configuration script.]

Compare your results with the your previous results of GMRES and CG.

(b) Scaling of Multigrid
Refine the initial 17× 17 grid 7 times to create a 2049× 2049 Poisson problem. Execute the code with

the same processing resources as before (64 MPI ranks), with CG as Krylov solver, Jacobi as a domain
decomposed preconditioner, and ICC as a sub-domain preconditioner. Test the convergence of the code.
How many linear iterations does KSP preform?

Now, rerun the same problem with CG as Krylov solve, and Algebraic Multigrid as preconditioner.
Compare the KSP convergence results of “CG plus ICC” with “CG plus multigrid”.

Interpret your results. How many linear iterations does KSP perform compared to the previous case?
Compare the overall average runtime

Refine the grid again 6, 8, and 10 times in each direction with Algebraic Multigrid as a preconditioner
and CG as a Krylov solver. Test the scaling of multigrid in terms of number of the linear iterations as the
grid gets refined. What do you observe?

4) Coding exercise
You do not need to use a supercomputer to carry out the following two exercises. You can use your

workstation. (If you want to use a supercomputer, implement on your workstation first, debug there, and
then run on a supercomputer.)

(a) One Dimension
Modify the ps4.c code to solve the Poisson’s Equation in 1D, with homogeneous Dirichlet boundary

conditions in 1D. The source term is derived from the following exact solution: $(x) = x2 − x4.
Run in a sequence of grid refinements to show that your implementation converges.

(b) Three Dimensions
Modify the ps4.c code to solve the Poisson’s Equation in 3D domain, with homogeneous Dirichlet

boundary conditions in 3D. The source term is derived from the following exact solution: $(x, y, z) =
(x2 − x4)× (y4 − y2)× (z2 − z4).

Run in a sequence of grid refinements to show that your implementation converges.

